Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL

Detalhes bibliográficos
Autor(a) principal: Jeferson Luis da Silva
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://doi.org/10.11606/T.5.2011.tde-23112011-185508
Resumo: Treinamento físico é considerado um dos principais instrumentos para promover um estilo de vida saudável. No entanto, os efeitos do treinamento resistido sobre as vias metabólicas, especialmente o metabolismo lipídico intravascular é em grande parte inexplorada e merece uma investigação mais aprofundada. No presente estudo nós avaliamos os efeitos do treinamento resistido sobre o metabolismo de uma nanoemulsão artificial lipídica e na transferência de lípides para HDL, uma importante etapa do metabolismo da HDL. A cinética plasmática da nanoemulsão artificial lipídica foi estudada em 15 homens saudáveis com treinamento resistido regular de 1-4 anos (idade = 25 ± 5 anos, VO2máx = 50 ± 6 mL/kg/min) e em 15 homens saudáveis sedentários (28 ± 7 anos, VO2máx = 35 ± 9 mL/kg/min). A nanoemulsão artificial lipídica marcada com éster de colesterol-14C e colesterol livre-3H foi injetada por via intravenosa, as amostras de plasma foram coletadas por 24 h para determinar curvas de cinéticas e a taxa fracional de remoção (TFR). Transferência de lípides para HDL foi determinada in vitro pela incubação de amostras de plasma com nanoemulsões (doadores de lípides) marcada com o isótopo radioativo colesterol livre, éster de colesterol, triglicérides e fosfolípides. Tamanho da HDL, atividade da paraoxonase 1 e os níveis de LDL oxidada também foram determinadas. Os dois grupos apresentaram LDL-colesterol, HDL-colesterol e triglicérides semelhantes, mas a LDL oxidada foi menor no grupo treinamento resistido (30 ± 9 vs 61 ± 19 U/L, p = 0,0005). No treinamento resistido, a nanoemulsão éster de colesterol-14C foi removida duas vezes mais rápido do que em indivíduos sedentários (TFR: 0,068 ± 0,023 vs 0,037 ± 0,028, p = 0,002), bem como o colesterol livre-3H (0,041 ± 0,025 vs 0,022 ± 0,023, p = 0,04). Embora ambos os componentes da nanoemulsão tenham sido removidos na mesma proporção em indivíduos sedentários, no grupo treinamento resistido o colesterol livre-3H foi removido mais lento do que o éster de colesterol-14C (p = 0,005). Tamanho da HDL, paraoxonase 1 e as taxas de transferência de HDL dos quatro lipídios foram as mesmas em ambos os grupos. Portanto, concluímos que o treinamento resistido acelera a remoção da nanoemulsão artificial lipídica, o que provavelmente explica a redução dos níveis de LDL oxidada no grupo treinamento resistido. O treinamento resistido também alterou o equilíbrio da TFR do colesterol livre e esterificado. No entanto, o treinamento resistido não teve efeito nos parâmetros relacionados ao metabolismo da HDL
id USP_a55c1e080274fa87c88f251b13d9c5dc
oai_identifier_str oai:teses.usp.br:tde-23112011-185508
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL Effects of resistance exercise on the low density lipoprotein (LDL) and high density lipoprotein (HDL) metabolism: utilizing an LDLlike nanoemulsion 2011-09-12Carmen Guilherme Christiano de Matos VinagreAntonio Casella FilhoRicardo David CoutoMarisa PassarelliIvani Credidio TrombettaJeferson Luis da SilvaUniversidade de São PauloCardiologiaUSPBR Cholesterol HDL/metabolism Cholesterol LDL/metabolism Colesterol HDL/metabolismo Colesterol LDL/metabolismo Exercício Exercise Lípideos Lipids Lipoproteínas Lipoproteins Nanoparticles Nanopartículas Resistance training Treinamento resistido Treinamento físico é considerado um dos principais instrumentos para promover um estilo de vida saudável. No entanto, os efeitos do treinamento resistido sobre as vias metabólicas, especialmente o metabolismo lipídico intravascular é em grande parte inexplorada e merece uma investigação mais aprofundada. No presente estudo nós avaliamos os efeitos do treinamento resistido sobre o metabolismo de uma nanoemulsão artificial lipídica e na transferência de lípides para HDL, uma importante etapa do metabolismo da HDL. A cinética plasmática da nanoemulsão artificial lipídica foi estudada em 15 homens saudáveis com treinamento resistido regular de 1-4 anos (idade = 25 ± 5 anos, VO2máx = 50 ± 6 mL/kg/min) e em 15 homens saudáveis sedentários (28 ± 7 anos, VO2máx = 35 ± 9 mL/kg/min). A nanoemulsão artificial lipídica marcada com éster de colesterol-14C e colesterol livre-3H foi injetada por via intravenosa, as amostras de plasma foram coletadas por 24 h para determinar curvas de cinéticas e a taxa fracional de remoção (TFR). Transferência de lípides para HDL foi determinada in vitro pela incubação de amostras de plasma com nanoemulsões (doadores de lípides) marcada com o isótopo radioativo colesterol livre, éster de colesterol, triglicérides e fosfolípides. Tamanho da HDL, atividade da paraoxonase 1 e os níveis de LDL oxidada também foram determinadas. Os dois grupos apresentaram LDL-colesterol, HDL-colesterol e triglicérides semelhantes, mas a LDL oxidada foi menor no grupo treinamento resistido (30 ± 9 vs 61 ± 19 U/L, p = 0,0005). No treinamento resistido, a nanoemulsão éster de colesterol-14C foi removida duas vezes mais rápido do que em indivíduos sedentários (TFR: 0,068 ± 0,023 vs 0,037 ± 0,028, p = 0,002), bem como o colesterol livre-3H (0,041 ± 0,025 vs 0,022 ± 0,023, p = 0,04). Embora ambos os componentes da nanoemulsão tenham sido removidos na mesma proporção em indivíduos sedentários, no grupo treinamento resistido o colesterol livre-3H foi removido mais lento do que o éster de colesterol-14C (p = 0,005). Tamanho da HDL, paraoxonase 1 e as taxas de transferência de HDL dos quatro lipídios foram as mesmas em ambos os grupos. Portanto, concluímos que o treinamento resistido acelera a remoção da nanoemulsão artificial lipídica, o que provavelmente explica a redução dos níveis de LDL oxidada no grupo treinamento resistido. O treinamento resistido também alterou o equilíbrio da TFR do colesterol livre e esterificado. No entanto, o treinamento resistido não teve efeito nos parâmetros relacionados ao metabolismo da HDL Exercise training is considered one of the main instruments to promote a healthy lifestyle. However, effects resistance training on the metabolic pathways, specially the intravascular lipid metabolism is largely unexplored and deserves further investigation. In this study we evaluated the effects of resistance training on the metabolism of an LDL-like nanoemulsion and on lipid transfer to HDL, an important step of HDL metabolism. LDL-like nanoemulsion plasma kinetics was studied in 15 healthy men under regular resistance training for 1-4 years (age = 25 ± 5 years, VO2peak = 50 ± 6 mL/kg/min) and in 15 healthy sedentary men (28 ± 7 years, VO2peak = 35 ± 9 mL/kg/min). LDL-like nanoemulsion labeled with 14C-cholesteryl ester and 3H-free cholesterol was injected intravenously, plasma samples were collected over 24 h to determine kinetics curves and fractional clearance rates (FCR). Lipid transfer to HDL was determined in vitro by incubating of plasma samples with nanoemulsions (lipid donors) labeled with radioactive free cholesterol, cholesteryl ester, triglycerides and phospholipids. HDL size, paraoxonase 1 activity and oxidized LDL levels were also determined. The two groups showed similar LDL and HDL-cholesterol and triglycerides, but oxidized LDL was lower in resistance training group (30 ± 9 vs 61 ± 19 U/L, p = 0.0005). In resistance training, the nanoemulsion 14Ccholesteryl ester was removed twice as fast than in sedentary individuals (FCR: 0.068 ± 0.023 vs 0.037 ± 0.028, p = 0.002), as well as 3H-free cholesterol (0.041 ± 0.025 vs 0.022 ± 0.023, p = 0.04). While both nanoemulsion labels were removed at the same rate in sedentary individuals, in resistance training group 3H-free cholesterol was removed slower than 14C-cholesteryl ester (p = 0.005). HDL size, paraoxonase 1 and the transfer rates to HDL of the four lipids were the same in both groups. Therefore, we conclude that the resistance training accelerated the clearance of LDL-like nanoemulsion, which probably accounts for the oxidized LDL levels reduction in resistance training group. Resistance training also changed the balance of free and esterified cholesterol FCRs. However, RT had no effect on HDL metabolism related parameters https://doi.org/10.11606/T.5.2011.tde-23112011-185508info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USP2023-12-21T20:00:25Zoai:teses.usp.br:tde-23112011-185508Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-22T13:12:56.289159Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.pt.fl_str_mv Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
dc.title.alternative.en.fl_str_mv Effects of resistance exercise on the low density lipoprotein (LDL) and high density lipoprotein (HDL) metabolism: utilizing an LDLlike nanoemulsion
title Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
spellingShingle Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
Jeferson Luis da Silva
title_short Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
title_full Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
title_fullStr Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
title_full_unstemmed Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
title_sort Os efeitos do exercício resistido no metabolismo da lipoproteína de baixa densidade (LDL) e da lipoproteína de alta densidade (HDL), utilizando uma nanoemulsão semelhante a LDL
author Jeferson Luis da Silva
author_facet Jeferson Luis da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Carmen Guilherme Christiano de Matos Vinagre
dc.contributor.referee1.fl_str_mv Antonio Casella Filho
dc.contributor.referee2.fl_str_mv Ricardo David Couto
dc.contributor.referee3.fl_str_mv Marisa Passarelli
dc.contributor.referee4.fl_str_mv Ivani Credidio Trombetta
dc.contributor.author.fl_str_mv Jeferson Luis da Silva
contributor_str_mv Carmen Guilherme Christiano de Matos Vinagre
Antonio Casella Filho
Ricardo David Couto
Marisa Passarelli
Ivani Credidio Trombetta
description Treinamento físico é considerado um dos principais instrumentos para promover um estilo de vida saudável. No entanto, os efeitos do treinamento resistido sobre as vias metabólicas, especialmente o metabolismo lipídico intravascular é em grande parte inexplorada e merece uma investigação mais aprofundada. No presente estudo nós avaliamos os efeitos do treinamento resistido sobre o metabolismo de uma nanoemulsão artificial lipídica e na transferência de lípides para HDL, uma importante etapa do metabolismo da HDL. A cinética plasmática da nanoemulsão artificial lipídica foi estudada em 15 homens saudáveis com treinamento resistido regular de 1-4 anos (idade = 25 ± 5 anos, VO2máx = 50 ± 6 mL/kg/min) e em 15 homens saudáveis sedentários (28 ± 7 anos, VO2máx = 35 ± 9 mL/kg/min). A nanoemulsão artificial lipídica marcada com éster de colesterol-14C e colesterol livre-3H foi injetada por via intravenosa, as amostras de plasma foram coletadas por 24 h para determinar curvas de cinéticas e a taxa fracional de remoção (TFR). Transferência de lípides para HDL foi determinada in vitro pela incubação de amostras de plasma com nanoemulsões (doadores de lípides) marcada com o isótopo radioativo colesterol livre, éster de colesterol, triglicérides e fosfolípides. Tamanho da HDL, atividade da paraoxonase 1 e os níveis de LDL oxidada também foram determinadas. Os dois grupos apresentaram LDL-colesterol, HDL-colesterol e triglicérides semelhantes, mas a LDL oxidada foi menor no grupo treinamento resistido (30 ± 9 vs 61 ± 19 U/L, p = 0,0005). No treinamento resistido, a nanoemulsão éster de colesterol-14C foi removida duas vezes mais rápido do que em indivíduos sedentários (TFR: 0,068 ± 0,023 vs 0,037 ± 0,028, p = 0,002), bem como o colesterol livre-3H (0,041 ± 0,025 vs 0,022 ± 0,023, p = 0,04). Embora ambos os componentes da nanoemulsão tenham sido removidos na mesma proporção em indivíduos sedentários, no grupo treinamento resistido o colesterol livre-3H foi removido mais lento do que o éster de colesterol-14C (p = 0,005). Tamanho da HDL, paraoxonase 1 e as taxas de transferência de HDL dos quatro lipídios foram as mesmas em ambos os grupos. Portanto, concluímos que o treinamento resistido acelera a remoção da nanoemulsão artificial lipídica, o que provavelmente explica a redução dos níveis de LDL oxidada no grupo treinamento resistido. O treinamento resistido também alterou o equilíbrio da TFR do colesterol livre e esterificado. No entanto, o treinamento resistido não teve efeito nos parâmetros relacionados ao metabolismo da HDL
publishDate 2011
dc.date.issued.fl_str_mv 2011-09-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.11606/T.5.2011.tde-23112011-185508
url https://doi.org/10.11606/T.5.2011.tde-23112011-185508
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de São Paulo
dc.publisher.program.fl_str_mv Cardiologia
dc.publisher.initials.fl_str_mv USP
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1794503006375378944