Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12052017-095610/ |
Resumo: | Os modelos de fragilidade são utilizados para modelar as possíveis associações entre os tempos de sobrevivência. Uma outra alternativa desenvolvida para modelar a dependência entre dados multivariados é o uso dos modelos baseados em funções cópulas. Neste trabalho propusemos dois modelos de sobrevivência derivados das cópulas de Ali- Mikhail-Haq (AMH) e de Frank para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método bayesiano de análise de influência de deleção de casos baseado na divergência ψ. Por fim, mostramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais. Apresentamos, também, um novo modelo de sobrevivência bivariado com fração de cura, que leva em consideração três configurações para o mecanismo de ativação latente: ativação aleatória, primeira ativação é última ativação. Aplicamos este modelo a um conjunto de dados de empréstimo de Crédito Direto ao modo do Consumidor (DCC) e comparamos os ajustes por meio dos critérios bayesianos de seleção de modelos para verificar qual dos três modelos melhor se ajustou. Por fim, mostramos nossa proposta futura para a continuação da pesquisa. |
id |
USP_a591444ea9c55ee727c504e75eada890 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-12052017-095610 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesianaStatistical modeling to bivariate survival data: a bayesian approacnAnálise de sobrevivênciaBivariate survival dataCopula functionsCure fractionDados de sobrevivência bivariadosFração de curaFunções cópulasSurvival analysisOs modelos de fragilidade são utilizados para modelar as possíveis associações entre os tempos de sobrevivência. Uma outra alternativa desenvolvida para modelar a dependência entre dados multivariados é o uso dos modelos baseados em funções cópulas. Neste trabalho propusemos dois modelos de sobrevivência derivados das cópulas de Ali- Mikhail-Haq (AMH) e de Frank para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método bayesiano de análise de influência de deleção de casos baseado na divergência ψ. Por fim, mostramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais. Apresentamos, também, um novo modelo de sobrevivência bivariado com fração de cura, que leva em consideração três configurações para o mecanismo de ativação latente: ativação aleatória, primeira ativação é última ativação. Aplicamos este modelo a um conjunto de dados de empréstimo de Crédito Direto ao modo do Consumidor (DCC) e comparamos os ajustes por meio dos critérios bayesianos de seleção de modelos para verificar qual dos três modelos melhor se ajustou. Por fim, mostramos nossa proposta futura para a continuação da pesquisa.The frailty models are used to model the possible associations between survival times. Another alternative developed for modeling the dependence between multivariate data is the use of models based on copulas functions. In this paper we propose two derived survival models of copula of the Ali-Mikhail-Haq (AMH) and of the Frank to model the dependence of bivariate data in the presence of covariates and censored observations. For inferential purposes, we conducted a Bayesian approach using Monte Carlo methods in Markov Chain (MCMC). Some discussions on the model selection criteria were presented. In order to detect influential observations we use the Bayesian method of cases of deletion of influence analysis based on the difference ψ. Finally, we show the applicability of the proposed models to sets of simulated and real data. We present, too, a new survival model with bivariate fraction of healing, which takes into account three settings for the latent activation mechanism: random activation, first activation and final activation. We apply this model to a set of Direct Credit loan data to the Consumer mode (DCC) and compare the settings, through Bayesian criteria for selection of models, which of the three models best fit. Finally, we show our future proposal for further research.Biblioteca Digitais de Teses e Dissertações da USPSuzuki, Adriano KamimuraRibeiro, Taís Roberta2017-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/104/104131/tde-12052017-095610/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-12052017-095610Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana Statistical modeling to bivariate survival data: a bayesian approacn |
title |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana |
spellingShingle |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana Ribeiro, Taís Roberta Análise de sobrevivência Bivariate survival data Copula functions Cure fraction Dados de sobrevivência bivariados Fração de cura Funções cópulas Survival analysis |
title_short |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana |
title_full |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana |
title_fullStr |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana |
title_full_unstemmed |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana |
title_sort |
Modelagens estatística para dados de sobrevivência bivariados: uma abordagem bayesiana |
author |
Ribeiro, Taís Roberta |
author_facet |
Ribeiro, Taís Roberta |
author_role |
author |
dc.contributor.none.fl_str_mv |
Suzuki, Adriano Kamimura |
dc.contributor.author.fl_str_mv |
Ribeiro, Taís Roberta |
dc.subject.por.fl_str_mv |
Análise de sobrevivência Bivariate survival data Copula functions Cure fraction Dados de sobrevivência bivariados Fração de cura Funções cópulas Survival analysis |
topic |
Análise de sobrevivência Bivariate survival data Copula functions Cure fraction Dados de sobrevivência bivariados Fração de cura Funções cópulas Survival analysis |
description |
Os modelos de fragilidade são utilizados para modelar as possíveis associações entre os tempos de sobrevivência. Uma outra alternativa desenvolvida para modelar a dependência entre dados multivariados é o uso dos modelos baseados em funções cópulas. Neste trabalho propusemos dois modelos de sobrevivência derivados das cópulas de Ali- Mikhail-Haq (AMH) e de Frank para modelar a dependência de dados bivariados na presença de covariáveis e observações censuradas. Para fins inferenciais, realizamos uma abordagem bayesiana usando métodos Monte Carlo em Cadeias de Markov (MCMC). Algumas discussões sobre os critérios de seleção de modelos são apresentadas. Com o objetivo de detectar observações influentes utilizamos o método bayesiano de análise de influência de deleção de casos baseado na divergência ψ. Por fim, mostramos a aplicabilidade dos modelos propostos a conjuntos de dados simulados e reais. Apresentamos, também, um novo modelo de sobrevivência bivariado com fração de cura, que leva em consideração três configurações para o mecanismo de ativação latente: ativação aleatória, primeira ativação é última ativação. Aplicamos este modelo a um conjunto de dados de empréstimo de Crédito Direto ao modo do Consumidor (DCC) e comparamos os ajustes por meio dos critérios bayesianos de seleção de modelos para verificar qual dos três modelos melhor se ajustou. Por fim, mostramos nossa proposta futura para a continuação da pesquisa. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12052017-095610/ |
url |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12052017-095610/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256893672652800 |