Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27072016-151155/ |
Resumo: | The simultaneous acquisitions of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been applied to improve the surgery planning of patients with drug resistant epilepsy. However, the classical approach of analyzing the EEG-fMRI data is inefficient in patients whom only few or non interictal epileptiforms discharges (IEDs) are detected during the simultaneous acquisition. Another issue of EEG-fMRI acquisition is related to its high sensitivity to motion, which decreases the quality of both data, even worse in non-cooperative patients. In this work we propose and discuss the application of two methods of analyzing fMRI data of patients with focal epilepsy: Independent component analysis (ICA) and two-dimensional temporal clustering (2dTCA). Each method was applied in a distinct group of patients and the results were compared to those obtained by the classic EEG-fMRI analysis. We have also proposed a method to improve the quality of EEG data using the head position measurements obtained, by a prospective motion correction (PMC) system, during the EEG-fMRI acquisitions. In the ICA study, we have used the electrical source images for selecting independent components (ICs) in EEG data of 13 patients with different spiking frequency. The method detected epilepsy-related BOLD activity in all the patients. Comparatively, the classic EEG-fMRI could be applied in 11 patients and epilepsy-related BOLD activities were found in seven of them. In the 2dTCA study, we have evaluated 20 patients and found epilepsy-related maps in 14 of them. Thirteen of the twenty patients have IEDs detected during the simultaneous acquisition; the classic EEG-fMRI provided maps related to the epileptogenic region in six of them. Finally we have verified in three health subjects that the proposed method for correcting motion-induced artefacts in the EEG data is effective for high amplitude and velocities (~1cm and 55mm/s). We concluded that the ICA and 2dTCA methods increase the sensitivity of using fMRI for mapping the epileptogenic region, mainly in patients presenting few or no IEDs in the EEG data simultaneously acquired to the fMRI. The PMC use during the fMRI acquisition does not degrade the quality of the EEG data acquired simultaneously. In fact, the motion information can be used for improving its quality by correcting motion-induced artefacts. |
id |
USP_a5a6e9205a12c053b78836b2a7e49d59 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-27072016-151155 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planningLocalização e estudo de fontes epileptogênicas em pacientes de epilepsia focal em fase pré-operatóriaCorreção de artefatos de MovimentoEEGEEGEEG-fMRIEEG-fMRIElectrical Source ImagingEpilepsiaEpilepsyImagens de Fontes ElétricasMotion-induced Artefacts CorrectionThe simultaneous acquisitions of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been applied to improve the surgery planning of patients with drug resistant epilepsy. However, the classical approach of analyzing the EEG-fMRI data is inefficient in patients whom only few or non interictal epileptiforms discharges (IEDs) are detected during the simultaneous acquisition. Another issue of EEG-fMRI acquisition is related to its high sensitivity to motion, which decreases the quality of both data, even worse in non-cooperative patients. In this work we propose and discuss the application of two methods of analyzing fMRI data of patients with focal epilepsy: Independent component analysis (ICA) and two-dimensional temporal clustering (2dTCA). Each method was applied in a distinct group of patients and the results were compared to those obtained by the classic EEG-fMRI analysis. We have also proposed a method to improve the quality of EEG data using the head position measurements obtained, by a prospective motion correction (PMC) system, during the EEG-fMRI acquisitions. In the ICA study, we have used the electrical source images for selecting independent components (ICs) in EEG data of 13 patients with different spiking frequency. The method detected epilepsy-related BOLD activity in all the patients. Comparatively, the classic EEG-fMRI could be applied in 11 patients and epilepsy-related BOLD activities were found in seven of them. In the 2dTCA study, we have evaluated 20 patients and found epilepsy-related maps in 14 of them. Thirteen of the twenty patients have IEDs detected during the simultaneous acquisition; the classic EEG-fMRI provided maps related to the epileptogenic region in six of them. Finally we have verified in three health subjects that the proposed method for correcting motion-induced artefacts in the EEG data is effective for high amplitude and velocities (~1cm and 55mm/s). We concluded that the ICA and 2dTCA methods increase the sensitivity of using fMRI for mapping the epileptogenic region, mainly in patients presenting few or no IEDs in the EEG data simultaneously acquired to the fMRI. The PMC use during the fMRI acquisition does not degrade the quality of the EEG data acquired simultaneously. In fact, the motion information can be used for improving its quality by correcting motion-induced artefacts.As aquisições simultâneas de dados de eletroencefalografia (EEG) e imagens funcionais por ressonância magnética (fMRI) vêm sendo utilizadas com intuito de melhorar o planejamento cirúrgico de pacientes com epilepsia refratária. Entretanto, o processamento classicamente usado nestes dados combinados não é possível em pacientes sem descargas epileptiformes interictais (IEDs) e possui baixa sensibilidade para aqueles em que poucas IEDs são detectadas durante a aquisição simultânea. Além disto, a técnica é sensível ao movimento dos pacientes durante as aquisições, o que reduz a qualidade dos dados, principalmente em pacientes não cooperantes. Neste trabalho é proposto e discutido o uso de dois métodos de processamento, baseados nas técnicas de análise de componentes independentes (ICA) e análise temporal de clusters em duas dimensões (2dtca), para se mapear regiões epileptogênicas. Cada método foi analisado em um conjunto diferente de pacientes e os resultados foram comparados com os obtidos pelo EEG-fMRI clássico. Finalmente, propomos um método que utiliza às medidas de posicionamento da cabeça, obtidas durante a aquisição das fMRI, para aumentar a qualidade dos dados de EEG adquiridos simultaneamente. No estudo usando ICA combinado com imagens de fontes elétricas analisamos os dados de 13 pacientes com diferentes frequências de descargas e observamos que este método encontrou ao menos uma componente independente relacionada à epilepsia em cada paciente. Comparativamente usando o processamento convencional foi possível avaliar 11 dos 13 pacientes, e em apenas sete deles os mapas resultantes foram considerados concordantes com a região epileptogênica (RE). No estudo utilizando 2dTCA avaliamos 20 pacientes e encontramos mapas relacionados com a RE em 14 deles. Neste conjunto de pacientes, 13 apresentaram IEDs durante as aquisições; neles o método clássico de processamento teve resultados concordantes com a RE em seis deles. Finalmente verificamos em três sujeitos saudáveis que o método aqui proposto para corrigir os artefatos induzidos no EEG devido ao movimento é efetivo para altas amplitudes e velocidades (~1cm e 55mm/s). Concluímos que os métodos ICA e 2dTCA aumentam a sensibilidade do uso de fMRI para mapear RE, principalmente em pacientes com baixa ou nenhuma detecção de IEDs durante às aquisições. Também concluímos que o uso da correção prospectiva de movimento em aquisições de fMRI não reduz a qualidade do dado de EEG adquirido simultaneamente e que às informações de movimento mensuradas podem melhorar a qualidade deste dado em situações de repouso e movimento do sujeito durante o experimento.Biblioteca Digitais de Teses e Dissertações da USPSalmon, Carlos Ernesto GarridoVelasco, Tonicarlo RodriguesMaziero, Danilo2016-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-27072016-151155/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2017-09-04T21:05:29Zoai:teses.usp.br:tde-27072016-151155Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning Localização e estudo de fontes epileptogênicas em pacientes de epilepsia focal em fase pré-operatória |
title |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning |
spellingShingle |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning Maziero, Danilo Correção de artefatos de Movimento EEG EEG EEG-fMRI EEG-fMRI Electrical Source Imaging Epilepsia Epilepsy Imagens de Fontes Elétricas Motion-induced Artefacts Correction |
title_short |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning |
title_full |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning |
title_fullStr |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning |
title_full_unstemmed |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning |
title_sort |
Localizing and studying epileptogenic sources in patients with focal epilepsy in pre-surgical planning |
author |
Maziero, Danilo |
author_facet |
Maziero, Danilo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Salmon, Carlos Ernesto Garrido Velasco, Tonicarlo Rodrigues |
dc.contributor.author.fl_str_mv |
Maziero, Danilo |
dc.subject.por.fl_str_mv |
Correção de artefatos de Movimento EEG EEG EEG-fMRI EEG-fMRI Electrical Source Imaging Epilepsia Epilepsy Imagens de Fontes Elétricas Motion-induced Artefacts Correction |
topic |
Correção de artefatos de Movimento EEG EEG EEG-fMRI EEG-fMRI Electrical Source Imaging Epilepsia Epilepsy Imagens de Fontes Elétricas Motion-induced Artefacts Correction |
description |
The simultaneous acquisitions of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been applied to improve the surgery planning of patients with drug resistant epilepsy. However, the classical approach of analyzing the EEG-fMRI data is inefficient in patients whom only few or non interictal epileptiforms discharges (IEDs) are detected during the simultaneous acquisition. Another issue of EEG-fMRI acquisition is related to its high sensitivity to motion, which decreases the quality of both data, even worse in non-cooperative patients. In this work we propose and discuss the application of two methods of analyzing fMRI data of patients with focal epilepsy: Independent component analysis (ICA) and two-dimensional temporal clustering (2dTCA). Each method was applied in a distinct group of patients and the results were compared to those obtained by the classic EEG-fMRI analysis. We have also proposed a method to improve the quality of EEG data using the head position measurements obtained, by a prospective motion correction (PMC) system, during the EEG-fMRI acquisitions. In the ICA study, we have used the electrical source images for selecting independent components (ICs) in EEG data of 13 patients with different spiking frequency. The method detected epilepsy-related BOLD activity in all the patients. Comparatively, the classic EEG-fMRI could be applied in 11 patients and epilepsy-related BOLD activities were found in seven of them. In the 2dTCA study, we have evaluated 20 patients and found epilepsy-related maps in 14 of them. Thirteen of the twenty patients have IEDs detected during the simultaneous acquisition; the classic EEG-fMRI provided maps related to the epileptogenic region in six of them. Finally we have verified in three health subjects that the proposed method for correcting motion-induced artefacts in the EEG data is effective for high amplitude and velocities (~1cm and 55mm/s). We concluded that the ICA and 2dTCA methods increase the sensitivity of using fMRI for mapping the epileptogenic region, mainly in patients presenting few or no IEDs in the EEG data simultaneously acquired to the fMRI. The PMC use during the fMRI acquisition does not degrade the quality of the EEG data acquired simultaneously. In fact, the motion information can be used for improving its quality by correcting motion-induced artefacts. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27072016-151155/ |
url |
http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27072016-151155/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257414442680320 |