Estabilidade assintótica e estrutural de campos vetoriais

Detalhes bibliográficos
Autor(a) principal: Pires, Benito Frazão
Data de Publicação: 2006
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02022007-093739/
Resumo: O objetivo deste trabalho é provar um Closing Lema Parcial para variedades bidimensionais compactas, orientáveis ou não--orientáveis. Para enunciá--lo, considere um campo vetorial \\linebreak $X\\in\\mathfrak^r(M)$, $r\\ge 2$, de classe $C^r$ em uma variedade bidimensional compacta $M$, e seja $\\Sigma$ um segmento transversal a $X$ passando por um ponto recorrente não--trivial $p$ de $X$. Seja $P:\\Sigma\\to\\Sigma$ a correspondente transformação de primeiro retorno. O primeiro resultado deste trabalho consiste em mostrar que se $P$ tem a propriedade de que para todo $n\\ge N$ e $x\\in{m dom}\\,(P^n)$, $\\vert DP^n(x)\\vert<\\lambda$, onde $N\\in\\N$ e $0<\\lambda<1$, então existe um campo vetorial $Y$ arbitrariamente próximo de $X$ na topologia $C^r$ tendo uma trajetória periódica passando por $p$. O segundo resultado consiste em apresentar condições, sobre os expoentes de Lyapunov de $P$, para que $\\vert DP^n\\vert<\\lambda$ para todo $n\\ge N$. Nesta tese, também incluímos um resultado sobre a estabilidade assintótica no infinito de campos planares diferenciáveis, mas não necessariamente de classe $C^1$.
id USP_a90c9f4e5c3ec32e6a908f9c70331951
oai_identifier_str oai:teses.usp.br:tde-02022007-093739
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estabilidade assintótica e estrutural de campos vetoriaisAsymptotic and Structural Stability of Vector Fieldsasymptotic stabilityClosing LemmaClosing Lemmaconnecting Lemmaconnecting lemmaestabilidade assintóticaestabilidade estruturalrecorrênciarecurrencestructural stabilityO objetivo deste trabalho é provar um Closing Lema Parcial para variedades bidimensionais compactas, orientáveis ou não--orientáveis. Para enunciá--lo, considere um campo vetorial \\linebreak $X\\in\\mathfrak^r(M)$, $r\\ge 2$, de classe $C^r$ em uma variedade bidimensional compacta $M$, e seja $\\Sigma$ um segmento transversal a $X$ passando por um ponto recorrente não--trivial $p$ de $X$. Seja $P:\\Sigma\\to\\Sigma$ a correspondente transformação de primeiro retorno. O primeiro resultado deste trabalho consiste em mostrar que se $P$ tem a propriedade de que para todo $n\\ge N$ e $x\\in{m dom}\\,(P^n)$, $\\vert DP^n(x)\\vert<\\lambda$, onde $N\\in\\N$ e $0<\\lambda<1$, então existe um campo vetorial $Y$ arbitrariamente próximo de $X$ na topologia $C^r$ tendo uma trajetória periódica passando por $p$. O segundo resultado consiste em apresentar condições, sobre os expoentes de Lyapunov de $P$, para que $\\vert DP^n\\vert<\\lambda$ para todo $n\\ge N$. Nesta tese, também incluímos um resultado sobre a estabilidade assintótica no infinito de campos planares diferenciáveis, mas não necessariamente de classe $C^1$.The aim of this work is to provide a Partial $C^r$ Closing Lemma for compact surfaces, orientable or non--orientable. To state it, let $X\\in\\mathfrak^r(M)$, $r\\ge 2$, be a $C^r$ vector field on a compact surface $M$ and let $\\Sigma$ be a transverse segment to $X$ passing through a non--trivial recurrent point $p$ of $X$. Let $P:\\Sigma\\to\\Sigma$ be the corresponding first return map. The first result of this work consists in showing that if $P^n$ has the property that for all $n\\ge N$ and $x\\in{m dom}\\,(P^n)$, $\\vert DP^n(x)\\vert<\\lambda$, where $N\\in\\N$ e $0<\\lambda<1$, then there exists a vector field $Y$ arbitrarily close to $X$ in the $C^r$ topology such that $p$ is a periodic point of $Y$. The second result consists in presenting sufficient conditions, upon the Lyapunov exponents of $P$, so that $\\vert DP^n\\vert<\\lambda$ for all $n\\ge N$. In this thesis, we also include a result concerning the asymptotic stability at infinity of planar differentiable vector fields, not necessarily of class $C^1$.Biblioteca Digitais de Teses e Dissertações da USPVidalon, Carlos Teobaldo GutierrezPires, Benito Frazão2006-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-02022007-093739/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-02022007-093739Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estabilidade assintótica e estrutural de campos vetoriais
Asymptotic and Structural Stability of Vector Fields
title Estabilidade assintótica e estrutural de campos vetoriais
spellingShingle Estabilidade assintótica e estrutural de campos vetoriais
Pires, Benito Frazão
asymptotic stability
Closing Lemma
Closing Lemma
connecting Lemma
connecting lemma
estabilidade assintótica
estabilidade estrutural
recorrência
recurrence
structural stability
title_short Estabilidade assintótica e estrutural de campos vetoriais
title_full Estabilidade assintótica e estrutural de campos vetoriais
title_fullStr Estabilidade assintótica e estrutural de campos vetoriais
title_full_unstemmed Estabilidade assintótica e estrutural de campos vetoriais
title_sort Estabilidade assintótica e estrutural de campos vetoriais
author Pires, Benito Frazão
author_facet Pires, Benito Frazão
author_role author
dc.contributor.none.fl_str_mv Vidalon, Carlos Teobaldo Gutierrez
dc.contributor.author.fl_str_mv Pires, Benito Frazão
dc.subject.por.fl_str_mv asymptotic stability
Closing Lemma
Closing Lemma
connecting Lemma
connecting lemma
estabilidade assintótica
estabilidade estrutural
recorrência
recurrence
structural stability
topic asymptotic stability
Closing Lemma
Closing Lemma
connecting Lemma
connecting lemma
estabilidade assintótica
estabilidade estrutural
recorrência
recurrence
structural stability
description O objetivo deste trabalho é provar um Closing Lema Parcial para variedades bidimensionais compactas, orientáveis ou não--orientáveis. Para enunciá--lo, considere um campo vetorial \\linebreak $X\\in\\mathfrak^r(M)$, $r\\ge 2$, de classe $C^r$ em uma variedade bidimensional compacta $M$, e seja $\\Sigma$ um segmento transversal a $X$ passando por um ponto recorrente não--trivial $p$ de $X$. Seja $P:\\Sigma\\to\\Sigma$ a correspondente transformação de primeiro retorno. O primeiro resultado deste trabalho consiste em mostrar que se $P$ tem a propriedade de que para todo $n\\ge N$ e $x\\in{m dom}\\,(P^n)$, $\\vert DP^n(x)\\vert<\\lambda$, onde $N\\in\\N$ e $0<\\lambda<1$, então existe um campo vetorial $Y$ arbitrariamente próximo de $X$ na topologia $C^r$ tendo uma trajetória periódica passando por $p$. O segundo resultado consiste em apresentar condições, sobre os expoentes de Lyapunov de $P$, para que $\\vert DP^n\\vert<\\lambda$ para todo $n\\ge N$. Nesta tese, também incluímos um resultado sobre a estabilidade assintótica no infinito de campos planares diferenciáveis, mas não necessariamente de classe $C^1$.
publishDate 2006
dc.date.none.fl_str_mv 2006-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02022007-093739/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02022007-093739/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256596967587840