Simulação da dinâmica do estado excitado em semicondutores orgânicos

Detalhes bibliográficos
Autor(a) principal: Faceto, Angelo Danilo
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-16072012-135847/
Resumo: Neste trabalho, o método de Monte Carlo e a resolução da Equação Mestra foram utilizados para simular o processo de difusão espectral da excitação em um sistema polimérico emissor de luz. A metodologia utilizada incorpora a relaxação energética intramolecular, a migração de energia incoerente entre segmentos conjugados e o processo final radiativo (luminescência). O principal objetivo é comparar os resultados da simulação e de experimentos envolvendo medidas de absorção, de excitação óptica e de luminescência realizadas no IFSC ao longo dos últimos anos ou provenientes da literatura especializada. Além disso, a simulação pretende elucidar a natureza dos processos fotofísicos em semicondutores orgânicos e testar a validade de teorias analíticas existentes, o que é essencial para a aplicação dessa classe de materiais como dispositivos no futuro. Especial atenção é dada na análise do comportamento temporal da difusão espectral em sistemas homogêneos em que o acoplamento dipolar na transferência de energia é realizado entre uma matriz de segmentos conjugados distribuídas aleatoriamente. A temperatura foi incorporada ao modelo. A comparação dos resultados da simulação com os resultados experimentais permitiu comprovar a validade do modelo proposto, do programa utilizado e entender melhor características de parâmetros não conhecidos em polímeros conjugados, como a influência da forma da distribuição energética dos estados eletrônicos e a distribuição e da temperatura no processo de migração do éxciton. Foi possível reproduzir com sucesso os espectros de luminescência e de absorção em polímeros conjugados descritos na literatura. Além disso, a simulação permitiu explicar resultados relacionados a sistemas poliméricos homogêneos anisotrópicos como polímeros estirados por uma tensão mecânica e materiais não homogêneos híbridos contendo polímero conjugado emissor de luz e nanopartículas. A maior contribuição foi o entendimento do efeito da temperatura nas propriedades de emissão como deslocamento espectral e alargamento homogêneo. Efeitos anômalos, como o deslocamento da emissão com a temperatura e o alcance da difusão com o tempo, foram explicados em termos da termalização do estado excitado e frustração da migração. Por fim, foi possível estudar os processos fotofísicos envolvidos em heteroestruturas orgânicas contendo gradiente energético que permitem o controle da migração direcional do éxciton e suas propriedades de emissão a partir dos processos de transferência de energia tipo Förster (dipolo-dipolo). O controle sobre os processos fotofísicos do polímero luminescente foi realizado através da alteração tanto da orientação como do tamanho de conjugação do material de polimérico.
id USP_ab04e1becbf142c1f2635f32e70070dc
oai_identifier_str oai:teses.usp.br:tde-16072012-135847
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Simulação da dinâmica do estado excitado em semicondutores orgânicosSimulation of the excited state dynamics in organic semiconductorsConjugated PolymersEquação MestraFotofísicaMaster EquationMonte Carlo SimulationOptical PropertiesPhotophysicsPolímeros conjugadosPropriedades ópticasSimulação de Monte CarloNeste trabalho, o método de Monte Carlo e a resolução da Equação Mestra foram utilizados para simular o processo de difusão espectral da excitação em um sistema polimérico emissor de luz. A metodologia utilizada incorpora a relaxação energética intramolecular, a migração de energia incoerente entre segmentos conjugados e o processo final radiativo (luminescência). O principal objetivo é comparar os resultados da simulação e de experimentos envolvendo medidas de absorção, de excitação óptica e de luminescência realizadas no IFSC ao longo dos últimos anos ou provenientes da literatura especializada. Além disso, a simulação pretende elucidar a natureza dos processos fotofísicos em semicondutores orgânicos e testar a validade de teorias analíticas existentes, o que é essencial para a aplicação dessa classe de materiais como dispositivos no futuro. Especial atenção é dada na análise do comportamento temporal da difusão espectral em sistemas homogêneos em que o acoplamento dipolar na transferência de energia é realizado entre uma matriz de segmentos conjugados distribuídas aleatoriamente. A temperatura foi incorporada ao modelo. A comparação dos resultados da simulação com os resultados experimentais permitiu comprovar a validade do modelo proposto, do programa utilizado e entender melhor características de parâmetros não conhecidos em polímeros conjugados, como a influência da forma da distribuição energética dos estados eletrônicos e a distribuição e da temperatura no processo de migração do éxciton. Foi possível reproduzir com sucesso os espectros de luminescência e de absorção em polímeros conjugados descritos na literatura. Além disso, a simulação permitiu explicar resultados relacionados a sistemas poliméricos homogêneos anisotrópicos como polímeros estirados por uma tensão mecânica e materiais não homogêneos híbridos contendo polímero conjugado emissor de luz e nanopartículas. A maior contribuição foi o entendimento do efeito da temperatura nas propriedades de emissão como deslocamento espectral e alargamento homogêneo. Efeitos anômalos, como o deslocamento da emissão com a temperatura e o alcance da difusão com o tempo, foram explicados em termos da termalização do estado excitado e frustração da migração. Por fim, foi possível estudar os processos fotofísicos envolvidos em heteroestruturas orgânicas contendo gradiente energético que permitem o controle da migração direcional do éxciton e suas propriedades de emissão a partir dos processos de transferência de energia tipo Förster (dipolo-dipolo). O controle sobre os processos fotofísicos do polímero luminescente foi realizado através da alteração tanto da orientação como do tamanho de conjugação do material de polimérico.In the present work, the Monte Carlo method and the direct numerical integration of the Master Equation were employed to simulate the excitation spectral diffusion process in light emitting polymeric systems. The methodology employed a competition among the internal intra-molecular relaxation, the inter-molecular incoherent energy transfer via Förster mechanism and the final process that may be a radiative emission or a non radiative relaxation through a suppression center. This works main objective is to compare the simulation results with the experiments of absorption, optical excitation and luminescence carried out in our group, throughout the last years or from the specialized literature. Moreover, the simulation intends to elucidate the nature of the photophysical processes in organic semiconductors and to test the validity of existing theories, what is essential for the application of this class of materials to devices in the future. Special attention is given to the analysis of the time dependence and the effect of temperature in homogenous systems, where the energy transfer and spectral diffusion were carried out through a matrix of randomly distributed conjugated segments coupled by dipole interaction. The comparison of the simulation results with the experimental ones allowed to prove the validity of the model, the computational program and to better understand characteristic of parameters for conjugated polymers which are still studied. Different energy distributions of electronic states, molecular position and orientation are used in order to simulate molecular configurations obtained by various sample preparation methodologies. With the simulation, it was possible to reproduce with success the experimental luminescence and absorption spectra in polymers conjugated described in literature. Besides, the simulation allowed to explain the exciton migration and properties related to temperature, such as the red shift and broadening of the spectral lines of conjugated polymer emission. The non exponential characteristics of the emissions time resolved intensity curves have been reproduced. The simulation was used to understand effects of temperature on the spectral diffusion as well. Anomalies related to spectral shift emission spectra with temperature and the mean diffusion length with time were explained with the thermalization and frustration of the migration at sufficiently low temperatures and at long relaxation times. Finally, it was possible to study the photophysical processes present in organic heterostructures having energy gradient, as well as the control of the properties of emission via changing the Förster type energy transfer processes between emitting polymers. The control over the photophysical process of the luminescent polymer was accomplished by changing both orientation and mean conjugation length of the polymer material.Biblioteca Digitais de Teses e Dissertações da USPGuimarães, Francisco Eduardo GontijoFaceto, Angelo Danilo2012-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-16072012-135847/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:32Zoai:teses.usp.br:tde-16072012-135847Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simulação da dinâmica do estado excitado em semicondutores orgânicos
Simulation of the excited state dynamics in organic semiconductors
title Simulação da dinâmica do estado excitado em semicondutores orgânicos
spellingShingle Simulação da dinâmica do estado excitado em semicondutores orgânicos
Faceto, Angelo Danilo
Conjugated Polymers
Equação Mestra
Fotofísica
Master Equation
Monte Carlo Simulation
Optical Properties
Photophysics
Polímeros conjugados
Propriedades ópticas
Simulação de Monte Carlo
title_short Simulação da dinâmica do estado excitado em semicondutores orgânicos
title_full Simulação da dinâmica do estado excitado em semicondutores orgânicos
title_fullStr Simulação da dinâmica do estado excitado em semicondutores orgânicos
title_full_unstemmed Simulação da dinâmica do estado excitado em semicondutores orgânicos
title_sort Simulação da dinâmica do estado excitado em semicondutores orgânicos
author Faceto, Angelo Danilo
author_facet Faceto, Angelo Danilo
author_role author
dc.contributor.none.fl_str_mv Guimarães, Francisco Eduardo Gontijo
dc.contributor.author.fl_str_mv Faceto, Angelo Danilo
dc.subject.por.fl_str_mv Conjugated Polymers
Equação Mestra
Fotofísica
Master Equation
Monte Carlo Simulation
Optical Properties
Photophysics
Polímeros conjugados
Propriedades ópticas
Simulação de Monte Carlo
topic Conjugated Polymers
Equação Mestra
Fotofísica
Master Equation
Monte Carlo Simulation
Optical Properties
Photophysics
Polímeros conjugados
Propriedades ópticas
Simulação de Monte Carlo
description Neste trabalho, o método de Monte Carlo e a resolução da Equação Mestra foram utilizados para simular o processo de difusão espectral da excitação em um sistema polimérico emissor de luz. A metodologia utilizada incorpora a relaxação energética intramolecular, a migração de energia incoerente entre segmentos conjugados e o processo final radiativo (luminescência). O principal objetivo é comparar os resultados da simulação e de experimentos envolvendo medidas de absorção, de excitação óptica e de luminescência realizadas no IFSC ao longo dos últimos anos ou provenientes da literatura especializada. Além disso, a simulação pretende elucidar a natureza dos processos fotofísicos em semicondutores orgânicos e testar a validade de teorias analíticas existentes, o que é essencial para a aplicação dessa classe de materiais como dispositivos no futuro. Especial atenção é dada na análise do comportamento temporal da difusão espectral em sistemas homogêneos em que o acoplamento dipolar na transferência de energia é realizado entre uma matriz de segmentos conjugados distribuídas aleatoriamente. A temperatura foi incorporada ao modelo. A comparação dos resultados da simulação com os resultados experimentais permitiu comprovar a validade do modelo proposto, do programa utilizado e entender melhor características de parâmetros não conhecidos em polímeros conjugados, como a influência da forma da distribuição energética dos estados eletrônicos e a distribuição e da temperatura no processo de migração do éxciton. Foi possível reproduzir com sucesso os espectros de luminescência e de absorção em polímeros conjugados descritos na literatura. Além disso, a simulação permitiu explicar resultados relacionados a sistemas poliméricos homogêneos anisotrópicos como polímeros estirados por uma tensão mecânica e materiais não homogêneos híbridos contendo polímero conjugado emissor de luz e nanopartículas. A maior contribuição foi o entendimento do efeito da temperatura nas propriedades de emissão como deslocamento espectral e alargamento homogêneo. Efeitos anômalos, como o deslocamento da emissão com a temperatura e o alcance da difusão com o tempo, foram explicados em termos da termalização do estado excitado e frustração da migração. Por fim, foi possível estudar os processos fotofísicos envolvidos em heteroestruturas orgânicas contendo gradiente energético que permitem o controle da migração direcional do éxciton e suas propriedades de emissão a partir dos processos de transferência de energia tipo Förster (dipolo-dipolo). O controle sobre os processos fotofísicos do polímero luminescente foi realizado através da alteração tanto da orientação como do tamanho de conjugação do material de polimérico.
publishDate 2012
dc.date.none.fl_str_mv 2012-04-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-16072012-135847/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-16072012-135847/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090772233879552