A caminhada do turista como ferramenta na identificação de padrões

Detalhes bibliográficos
Autor(a) principal: Campiteli, Mônica Guimarães
Data de Publicação: 2007
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-20042010-160801/
Resumo: A caminhada do turista pode ser enunciada num meio desordenado formado por N pontos espalhados aleatoriamente num hipercubo de d dimensoes. Um caminhante, partindo de um ponto qualquer desse meio, se desloca seguindo a regra determinista de dirigir-se sempre ao ponto mais proximo que nao tenha sido visitado nos ultimos µ pas- sos. Esta dinamica de movimentacao leva a trajetorias formadas por uma parte inicial transiente de t pontos, e uma parte final c?clica de p pontos. As trajetorias obtidas sao altamente dependentes da configuracao do meio. Este cenario sugere que este modelo possa ser usado como uma ferramenta de reconhecimento de padroes em conjuntos de dados. O objetivo desta tese e mostrar que as propriedades da caminhada do turista permitem a sua utilizacao na caracterizacao e exploracao de diversos tipos de sistemas. Aplicamos o modelo descrito em dois tipos distintos de sistemas, sistemas cont´?nuos e redes regulares, estudando suas ropriedades em funcao de parametros como tamanho do sistema, valor de memoria (µ), condicoes de contorno e regras de movimentacao. Finalmente, propomos e exploramos duas novas metodologias de reconhecimento de padroes baseadas nesta caminhada. A primeira consiste de um algoritmo de an´alise de imagens para caracterizar texturas que utiliza os resultados da matriz conjunta S(t, p) que carrega as informacoes sobre todas as trajetorias obtidas, reduzindo sua dimensionalidade e permitindo a classificacao eficiente de diferentes classes de imagens por um algoritmo de analise discriminante. O diferencial desta metodologia esta em sua capacidade de extrair da imagem as informacoes presentes em diversas escalas simultaneamente. A segunda metodologia e um algoritmo de agrupamento de dados n~ao supervisionado que considera cada atrator formado num dado valor de µ como um agrupamento natural e tem como resultado final uma arvore hierarquica geral, onde os grupos se conectam conforme se aumenta o valor de µ. Os resultados desta metodologia comparam-se em eficiencia aos resultados obtidos pela metodologia adicional para os dados testados e, entre as vanta- gens obtidas, podemos citar (i) independencia de uma metrica relacionando os elementos do conjunto, ja que trabalha apenas com uma matriz de vizinhancas, (ii) respeito a estrutura natural embutida no conjunto de dados, gerando uma arvore geral ao inves de uma arvore binaria e (iii) a representacao de maneira identica de conjuntos que sofreram transformacao de escala devido a independencia de uma metrica.
id USP_abbefe23004529d85d1e63eac0836b4e
oai_identifier_str oai:teses.usp.br:tde-20042010-160801
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling A caminhada do turista como ferramenta na identificação de padrõesThe tourist walk as a tool in pattern recognitionanalise de imagenscaminhada deterministacaminhada do turistaclusteringclusterizacaodeterministic walkimage analysispattern recognitionreconhecimento de padroestourist walkA caminhada do turista pode ser enunciada num meio desordenado formado por N pontos espalhados aleatoriamente num hipercubo de d dimensoes. Um caminhante, partindo de um ponto qualquer desse meio, se desloca seguindo a regra determinista de dirigir-se sempre ao ponto mais proximo que nao tenha sido visitado nos ultimos µ pas- sos. Esta dinamica de movimentacao leva a trajetorias formadas por uma parte inicial transiente de t pontos, e uma parte final c?clica de p pontos. As trajetorias obtidas sao altamente dependentes da configuracao do meio. Este cenario sugere que este modelo possa ser usado como uma ferramenta de reconhecimento de padroes em conjuntos de dados. O objetivo desta tese e mostrar que as propriedades da caminhada do turista permitem a sua utilizacao na caracterizacao e exploracao de diversos tipos de sistemas. Aplicamos o modelo descrito em dois tipos distintos de sistemas, sistemas cont´?nuos e redes regulares, estudando suas ropriedades em funcao de parametros como tamanho do sistema, valor de memoria (µ), condicoes de contorno e regras de movimentacao. Finalmente, propomos e exploramos duas novas metodologias de reconhecimento de padroes baseadas nesta caminhada. A primeira consiste de um algoritmo de an´alise de imagens para caracterizar texturas que utiliza os resultados da matriz conjunta S(t, p) que carrega as informacoes sobre todas as trajetorias obtidas, reduzindo sua dimensionalidade e permitindo a classificacao eficiente de diferentes classes de imagens por um algoritmo de analise discriminante. O diferencial desta metodologia esta em sua capacidade de extrair da imagem as informacoes presentes em diversas escalas simultaneamente. A segunda metodologia e um algoritmo de agrupamento de dados n~ao supervisionado que considera cada atrator formado num dado valor de µ como um agrupamento natural e tem como resultado final uma arvore hierarquica geral, onde os grupos se conectam conforme se aumenta o valor de µ. Os resultados desta metodologia comparam-se em eficiencia aos resultados obtidos pela metodologia adicional para os dados testados e, entre as vanta- gens obtidas, podemos citar (i) independencia de uma metrica relacionando os elementos do conjunto, ja que trabalha apenas com uma matriz de vizinhancas, (ii) respeito a estrutura natural embutida no conjunto de dados, gerando uma arvore geral ao inves de uma arvore binaria e (iii) a representacao de maneira identica de conjuntos que sofreram transformacao de escala devido a independencia de uma metrica.The tourist walk is defined in a disordered environment characterized by N points randomly distributed in a d-dimensional hypercube. Leaving from a given point, a wal- ker moves according to the deterministic rule of going to next point not visited in the last µ time steps. This dynamics leads to trajectories consisting in a transient part of t points e a final cyclic part of p points. The obtained trajectories are strongly dependent on the configuration of points. This described scenario suggests that the model can be treated as a tool for pattern recognition. The aim of this thesis is to demonstrate that the tourist walk\'s properties allow for its use in the characterization and exploration of various kinds of systems. We have applied the model in two distinct kinds of systems - continuous systems and regular networks and studied its properties as a function of the following parameters: system size, memory (µ), boundary conditions and movimentation rule. Eventually we have proposed and explored two new pattern recognition methodolo- gies based on this deterministic walk. The first one consists of an image analysis algorithm to characterize textures that makes use of the joint matrix S(t, p) which carries the data about all trajectories obtained, reducing its dimensionality and allowing an efficient clas- sification of different classes of images by a discriminant analysis algorithm. Its distinctive feature is its ability to extract informations in all scales from an image simultaneously. The second methodology proposed is a non-supervised clustering algorithm that considers each attractor in a given µ as a natural cluster. Its final result is a general hierarchical tree where groups coalesce as µ is increased. The results obtained with this methodology are comparable in efficiency with the results obtained with the tradicional method for the datasets tested. Among the advantages presented we can cite (i) independence from a metrics relating the elements since it works only with a neighborhood ranking table, (ii) respect for the natural structure hidden in the dataset, generating a general tree instead of a binary one and (iii) the representation of two sets transformed by scale in an identic manner due to the independence from a metrics.Biblioteca Digitais de Teses e Dissertações da USPKinouchi Filho, OsameCampiteli, Mônica Guimarães2007-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-20042010-160801/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-20042010-160801Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A caminhada do turista como ferramenta na identificação de padrões
The tourist walk as a tool in pattern recognition
title A caminhada do turista como ferramenta na identificação de padrões
spellingShingle A caminhada do turista como ferramenta na identificação de padrões
Campiteli, Mônica Guimarães
analise de imagens
caminhada determinista
caminhada do turista
clustering
clusterizacao
deterministic walk
image analysis
pattern recognition
reconhecimento de padroes
tourist walk
title_short A caminhada do turista como ferramenta na identificação de padrões
title_full A caminhada do turista como ferramenta na identificação de padrões
title_fullStr A caminhada do turista como ferramenta na identificação de padrões
title_full_unstemmed A caminhada do turista como ferramenta na identificação de padrões
title_sort A caminhada do turista como ferramenta na identificação de padrões
author Campiteli, Mônica Guimarães
author_facet Campiteli, Mônica Guimarães
author_role author
dc.contributor.none.fl_str_mv Kinouchi Filho, Osame
dc.contributor.author.fl_str_mv Campiteli, Mônica Guimarães
dc.subject.por.fl_str_mv analise de imagens
caminhada determinista
caminhada do turista
clustering
clusterizacao
deterministic walk
image analysis
pattern recognition
reconhecimento de padroes
tourist walk
topic analise de imagens
caminhada determinista
caminhada do turista
clustering
clusterizacao
deterministic walk
image analysis
pattern recognition
reconhecimento de padroes
tourist walk
description A caminhada do turista pode ser enunciada num meio desordenado formado por N pontos espalhados aleatoriamente num hipercubo de d dimensoes. Um caminhante, partindo de um ponto qualquer desse meio, se desloca seguindo a regra determinista de dirigir-se sempre ao ponto mais proximo que nao tenha sido visitado nos ultimos µ pas- sos. Esta dinamica de movimentacao leva a trajetorias formadas por uma parte inicial transiente de t pontos, e uma parte final c?clica de p pontos. As trajetorias obtidas sao altamente dependentes da configuracao do meio. Este cenario sugere que este modelo possa ser usado como uma ferramenta de reconhecimento de padroes em conjuntos de dados. O objetivo desta tese e mostrar que as propriedades da caminhada do turista permitem a sua utilizacao na caracterizacao e exploracao de diversos tipos de sistemas. Aplicamos o modelo descrito em dois tipos distintos de sistemas, sistemas cont´?nuos e redes regulares, estudando suas ropriedades em funcao de parametros como tamanho do sistema, valor de memoria (µ), condicoes de contorno e regras de movimentacao. Finalmente, propomos e exploramos duas novas metodologias de reconhecimento de padroes baseadas nesta caminhada. A primeira consiste de um algoritmo de an´alise de imagens para caracterizar texturas que utiliza os resultados da matriz conjunta S(t, p) que carrega as informacoes sobre todas as trajetorias obtidas, reduzindo sua dimensionalidade e permitindo a classificacao eficiente de diferentes classes de imagens por um algoritmo de analise discriminante. O diferencial desta metodologia esta em sua capacidade de extrair da imagem as informacoes presentes em diversas escalas simultaneamente. A segunda metodologia e um algoritmo de agrupamento de dados n~ao supervisionado que considera cada atrator formado num dado valor de µ como um agrupamento natural e tem como resultado final uma arvore hierarquica geral, onde os grupos se conectam conforme se aumenta o valor de µ. Os resultados desta metodologia comparam-se em eficiencia aos resultados obtidos pela metodologia adicional para os dados testados e, entre as vanta- gens obtidas, podemos citar (i) independencia de uma metrica relacionando os elementos do conjunto, ja que trabalha apenas com uma matriz de vizinhancas, (ii) respeito a estrutura natural embutida no conjunto de dados, gerando uma arvore geral ao inves de uma arvore binaria e (iii) a representacao de maneira identica de conjuntos que sofreram transformacao de escala devido a independencia de uma metrica.
publishDate 2007
dc.date.none.fl_str_mv 2007-06-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59135/tde-20042010-160801/
url http://www.teses.usp.br/teses/disponiveis/59/59135/tde-20042010-160801/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257152872251392