Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.

Detalhes bibliográficos
Autor(a) principal: Fortes, Gustavo Mattos
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3133/tde-17032023-105158/
Resumo: CO2 emission levels in the atmosphere are of increasing concern as it is associated with global warming. Thus, smart solutions such as artificial photosynthesis (AP) are proposed, because not only do these consume CO2, but they also can chemically store energy as fuels. Indeed, AP consists of converting CO2 and H2O into organic molecules, such as methane (CH4), methanol (CH3-OH), and ethanol (C2H5-OH). In this study, nano- ZnO was selected to perform APs photocatalytic reactions, since ZnO is an intrinsic ntype wide band gap (Eg = 3.37 eV) semiconductor. The ZnO surface, significantly increased due to the nanosized crystallites, presents a high affinity to adsorb CO2 and H2O for reduction/oxidation reactions. Further, chloride or fluoride doping was employed for nano-stabilization and to improve intergranular electrical conductivity through the grain boundary (GB), thus benefiting charge separation instead of recombination. The ZnO nanoparticles were prepared by polymeric precursor method and doped with chloride: 0, 1, 3, 4, and 6 mol%, while others with fluoride: 0, 1, 3, 5, and 7 mol%. Powder samples were characterized by XRD, XRF, BET (N2 adsorption for surface area measurement), He pycnometry, DRIFT, and TEM, while pressed pellets of the samples were tested in impedance spectroscopy to measure the electrical conductivity. Some doped samples exhibited a fine crystalline size of 23 nm, and a high specific surface area of 18 m2/g was achieved. These samples presented surface and GB dopant segregation, which demonstrated to enhance GB conductivity, but to hinder CO2 and H2O surface adsorption. Removing excess Cl from the surface by selective lixiviation decreased the electrical conductivity compared to pristine samples, but after lixiviation, samples still showed higher electrical conductivity than the undoped ZnO. Lixiviation affects mainly the surface segregated Cl ions that contribute to the charge transport, possibly by both Cl ionic species and electronic defects. On the other hand, the Cl segregated in the solid-solid interface is less affected by lixiviation. Thus, Cl-doped ZnO grain boundaries retain the dopant upon lixiviation and enhance electronic conduction. The photocatalytic activity of ZnO was improved with Cl-doping and its lixiviation, demonstrating a direct relationship between improved charge transport at the grain boundary and enhanced catalytic activity.
id USP_ac1fcc22fb7f2b3999e881300f331ac7
oai_identifier_str oai:teses.usp.br:tde-17032023-105158
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.Segregação aniônica de nano-ZnO dopado com cloreto e fluoreto: evolução da microestrutura, condutividade elétrica e fotocatálise.Abatimento de CO2Artificial photosynthesisCl--dopingCO2 abatementDopagem com Cl-Dopagem com F-Energia de interfaceExcesso de interfaceF--dopingFotossíntese artificialInterface energyInterface excessLixiviação seletivaNanopartículas de ZnOSelective lixiviationZnO nanoparticlesCO2 emission levels in the atmosphere are of increasing concern as it is associated with global warming. Thus, smart solutions such as artificial photosynthesis (AP) are proposed, because not only do these consume CO2, but they also can chemically store energy as fuels. Indeed, AP consists of converting CO2 and H2O into organic molecules, such as methane (CH4), methanol (CH3-OH), and ethanol (C2H5-OH). In this study, nano- ZnO was selected to perform APs photocatalytic reactions, since ZnO is an intrinsic ntype wide band gap (Eg = 3.37 eV) semiconductor. The ZnO surface, significantly increased due to the nanosized crystallites, presents a high affinity to adsorb CO2 and H2O for reduction/oxidation reactions. Further, chloride or fluoride doping was employed for nano-stabilization and to improve intergranular electrical conductivity through the grain boundary (GB), thus benefiting charge separation instead of recombination. The ZnO nanoparticles were prepared by polymeric precursor method and doped with chloride: 0, 1, 3, 4, and 6 mol%, while others with fluoride: 0, 1, 3, 5, and 7 mol%. Powder samples were characterized by XRD, XRF, BET (N2 adsorption for surface area measurement), He pycnometry, DRIFT, and TEM, while pressed pellets of the samples were tested in impedance spectroscopy to measure the electrical conductivity. Some doped samples exhibited a fine crystalline size of 23 nm, and a high specific surface area of 18 m2/g was achieved. These samples presented surface and GB dopant segregation, which demonstrated to enhance GB conductivity, but to hinder CO2 and H2O surface adsorption. Removing excess Cl from the surface by selective lixiviation decreased the electrical conductivity compared to pristine samples, but after lixiviation, samples still showed higher electrical conductivity than the undoped ZnO. Lixiviation affects mainly the surface segregated Cl ions that contribute to the charge transport, possibly by both Cl ionic species and electronic defects. On the other hand, the Cl segregated in the solid-solid interface is less affected by lixiviation. Thus, Cl-doped ZnO grain boundaries retain the dopant upon lixiviation and enhance electronic conduction. The photocatalytic activity of ZnO was improved with Cl-doping and its lixiviation, demonstrating a direct relationship between improved charge transport at the grain boundary and enhanced catalytic activity.Os níveis de emissão de CO2 na atmosfera são uma preocupação crescente devido a sua associação ao aquecimento global. Assim, são propostas soluções engenhosas como a fotossíntese artificial (FA), pois não apenas consumiriam o CO2, mas também armazenariam energia quimicamente na forma de combustíveis. De fato, FA consiste em converter CO2 e H2O em moléculas orgânicas, como metano (CH4), metanol (CH3- OH), e etanol (C2H5-OH). Neste estudo, o nano-ZnO foi escolhido como fotocatalisador da FA, já que o ZnO é um semicondutor intrínseco do tipo n de largo band gap (Eg = 3.37 eV). Além de que sua superfície, elevada devido ao tamanho dos nano-cristalitos, apresenta uma alta afinidade para adsorver ambos CO2 e H2O para as reações de redução e oxidação. As dopagens com cloretos ou fluoretos foram empregadas para a nano-estabilização e para melhorar a condutividade elétrica intergranular, através do contorno de grão (CG), assim favorecendo a separação de cargas em detrimento da recombinação. As nanopartículas de ZnO foram obtidas pelo método dos precursores poliméricos e dopadas com cloretos: 0, 1, 3, 4 e 6 %mol, enquanto outras com fluoretos: 0, 1, 3, 5 e 7 %mol. As amostras em pó foram caracterizadas por DRX, FRX, BET (adsorção de N2 para medir área superficial), picnometria a He, DRIFT e MET, enquanto pastilhas das amostras prensadas foram analisadas em espectrometria de impedância para medir a condutividade elétrica. Algumas amostras dopadas exibiram pequeno tamanho de cristalito de 23 nm e alcançaram alta área superficial específica de 18 m2/g. As amostras apresentaram segregação dos dopantes na superfície e no CG, que beneficiou a condutividade elétrica no CG, mas dificultou a adsorção de CO2 e H2O na superfície. A remoção do excesso de Cl da superfície por lixiviação seletiva reduziu a condutividade elétrica quando comparado com as amostras originais, mas após a lixiviação, as amostras ainda apresentaram maios condutividade elétrica do que o ZnO não-dopado. A lixiviação afetou principalmente os íons de Cl segregados na superfície que contribuíam para o transporte de carga, possivelmente por espécies iônicas Cl e defeitos eletrônicos. Entretanto, o Cl segregado na interface sólido-sólido é menos afetado pela lixiviação. Assim, o contorno de grão do ZnO dopado com Cl reteve o dopante durante a lixiviação e melhorou a condutividade eletrônica. A atividade fotocatalítica do ZnO foi melhorada com a dopagem com Cl e a lixiviação, demonstrando a direta correlação entre um bom transporte de cargas no contorno de grão e a melhora na atividade catalítica.Biblioteca Digitais de Teses e Dissertações da USPGouvêa, DouglasFortes, Gustavo Mattos2022-09-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3133/tde-17032023-105158/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-03-17T14:18:36Zoai:teses.usp.br:tde-17032023-105158Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-03-17T14:18:36Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
Segregação aniônica de nano-ZnO dopado com cloreto e fluoreto: evolução da microestrutura, condutividade elétrica e fotocatálise.
title Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
spellingShingle Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
Fortes, Gustavo Mattos
Abatimento de CO2
Artificial photosynthesis
Cl--doping
CO2 abatement
Dopagem com Cl-
Dopagem com F-
Energia de interface
Excesso de interface
F--doping
Fotossíntese artificial
Interface energy
Interface excess
Lixiviação seletiva
Nanopartículas de ZnO
Selective lixiviation
ZnO nanoparticles
title_short Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
title_full Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
title_fullStr Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
title_full_unstemmed Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
title_sort Anionic segregation of chloride and fluoride doped-nano ZnO: microstructure evolution, electrical conductivity and photocatalysis.
author Fortes, Gustavo Mattos
author_facet Fortes, Gustavo Mattos
author_role author
dc.contributor.none.fl_str_mv Gouvêa, Douglas
dc.contributor.author.fl_str_mv Fortes, Gustavo Mattos
dc.subject.por.fl_str_mv Abatimento de CO2
Artificial photosynthesis
Cl--doping
CO2 abatement
Dopagem com Cl-
Dopagem com F-
Energia de interface
Excesso de interface
F--doping
Fotossíntese artificial
Interface energy
Interface excess
Lixiviação seletiva
Nanopartículas de ZnO
Selective lixiviation
ZnO nanoparticles
topic Abatimento de CO2
Artificial photosynthesis
Cl--doping
CO2 abatement
Dopagem com Cl-
Dopagem com F-
Energia de interface
Excesso de interface
F--doping
Fotossíntese artificial
Interface energy
Interface excess
Lixiviação seletiva
Nanopartículas de ZnO
Selective lixiviation
ZnO nanoparticles
description CO2 emission levels in the atmosphere are of increasing concern as it is associated with global warming. Thus, smart solutions such as artificial photosynthesis (AP) are proposed, because not only do these consume CO2, but they also can chemically store energy as fuels. Indeed, AP consists of converting CO2 and H2O into organic molecules, such as methane (CH4), methanol (CH3-OH), and ethanol (C2H5-OH). In this study, nano- ZnO was selected to perform APs photocatalytic reactions, since ZnO is an intrinsic ntype wide band gap (Eg = 3.37 eV) semiconductor. The ZnO surface, significantly increased due to the nanosized crystallites, presents a high affinity to adsorb CO2 and H2O for reduction/oxidation reactions. Further, chloride or fluoride doping was employed for nano-stabilization and to improve intergranular electrical conductivity through the grain boundary (GB), thus benefiting charge separation instead of recombination. The ZnO nanoparticles were prepared by polymeric precursor method and doped with chloride: 0, 1, 3, 4, and 6 mol%, while others with fluoride: 0, 1, 3, 5, and 7 mol%. Powder samples were characterized by XRD, XRF, BET (N2 adsorption for surface area measurement), He pycnometry, DRIFT, and TEM, while pressed pellets of the samples were tested in impedance spectroscopy to measure the electrical conductivity. Some doped samples exhibited a fine crystalline size of 23 nm, and a high specific surface area of 18 m2/g was achieved. These samples presented surface and GB dopant segregation, which demonstrated to enhance GB conductivity, but to hinder CO2 and H2O surface adsorption. Removing excess Cl from the surface by selective lixiviation decreased the electrical conductivity compared to pristine samples, but after lixiviation, samples still showed higher electrical conductivity than the undoped ZnO. Lixiviation affects mainly the surface segregated Cl ions that contribute to the charge transport, possibly by both Cl ionic species and electronic defects. On the other hand, the Cl segregated in the solid-solid interface is less affected by lixiviation. Thus, Cl-doped ZnO grain boundaries retain the dopant upon lixiviation and enhance electronic conduction. The photocatalytic activity of ZnO was improved with Cl-doping and its lixiviation, demonstrating a direct relationship between improved charge transport at the grain boundary and enhanced catalytic activity.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3133/tde-17032023-105158/
url https://www.teses.usp.br/teses/disponiveis/3/3133/tde-17032023-105158/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257093821693952