Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10052021-132937/ |
Resumo: | Usuários enfrentam dificuldades em escolher produtos e serviços na Web devido a grande variedade de possibilidades de escolha. Nesse contexto, os sistemas de recomendação têm como objetivo auxiliar indivíduos a identificarem itens de interesse em um conjunto de opções. As abordagens tradicionais de sistemas de recomendação focam em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações reais, é importante também considerar informações contextuais, por meio dos sistemas de recomendação sensíveis ao contexto, uma vez que estudos indicam que o uso de tais informações pode melhorar a acurácia das recomendações. Existem diversos tipos de sistemas de recomendação, como os baseados em conteúdo, na vizinhança de usuários e itens, baseados em fatoração de matrizes e em deep learning. No entanto, a maioria desses sistemas são considerados caixas-pretas, já que não oferecem transparência ao processo de recomendação, o que dificulta que usuários confiem nas recomendações apresentadas. Nesse sentido, fornecer recomendações interpretáveis tende a aumentar a confiança e a satisfação do usuário em relação ao sistema. O uso de explicações em sistemas de recomendação tem se mostrado uma área de pesquisa promissora, mas, ainda assim, poucos trabalhos exploraram a utilização de contexto como forma de gerar as explicações. Diante desse cenário, este projeto tem como objetivo propor o método HINCARS que gera recomendações interpretáveis utilizando informações contextuais. Os resultados obtidos mostraram que o método obteve resultados equiparáveis a um algoritmo estado-da-arte. |
id |
USP_ac69a078a7bda447387a6caaecc36cd8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10052021-132937 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contextoGenerating interpretable recommendations in recommender systems using contextContextual informationHeterogeneous networkInformação contextualInterpretabilidadeInterpretabilityRecommender systemsRedes heterogêneasSistemas de recomendaçãoUsuários enfrentam dificuldades em escolher produtos e serviços na Web devido a grande variedade de possibilidades de escolha. Nesse contexto, os sistemas de recomendação têm como objetivo auxiliar indivíduos a identificarem itens de interesse em um conjunto de opções. As abordagens tradicionais de sistemas de recomendação focam em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações reais, é importante também considerar informações contextuais, por meio dos sistemas de recomendação sensíveis ao contexto, uma vez que estudos indicam que o uso de tais informações pode melhorar a acurácia das recomendações. Existem diversos tipos de sistemas de recomendação, como os baseados em conteúdo, na vizinhança de usuários e itens, baseados em fatoração de matrizes e em deep learning. No entanto, a maioria desses sistemas são considerados caixas-pretas, já que não oferecem transparência ao processo de recomendação, o que dificulta que usuários confiem nas recomendações apresentadas. Nesse sentido, fornecer recomendações interpretáveis tende a aumentar a confiança e a satisfação do usuário em relação ao sistema. O uso de explicações em sistemas de recomendação tem se mostrado uma área de pesquisa promissora, mas, ainda assim, poucos trabalhos exploraram a utilização de contexto como forma de gerar as explicações. Diante desse cenário, este projeto tem como objetivo propor o método HINCARS que gera recomendações interpretáveis utilizando informações contextuais. Os resultados obtidos mostraram que o método obteve resultados equiparáveis a um algoritmo estado-da-arte.Users face difficulties in choosing products and services on the Web because of the wide range of options. In this context, recommendation systems aim to assist users in identifying items of interest within a set of options. Traditional approaches to recommender systems focus on recommending more relevant items to individual users, not taking into account users context. However, in many real-world applications, it is also important to consider contextual information through the use of context-aware recommender systems. Several studies have indicated that using such information can improve the accuracy of recommendations. There are various types of recommendation systems, such as contentbased, neighborhood-based, matrix factorization and deep-learning-based systems. However, most of these systems are considered black boxes, since they do not offer transparency to the recommendation process, which makes it difficult for users to trust the recommendations that are presented to them. In this sense, providing interpretable recommendations tends to increase user confidence and satisfaction with the system. The use of explanations in recommendation systems has shown to be a promising area of research, but only a few works have explored the use of context as a way of generating explanations. Given this scenario, this project aims to propose a method that generates interpretable recommendations using contextual information. The obtained results showed that HINCARS had similar performance than a state-of-the-art recommendation method.Biblioteca Digitais de Teses e Dissertações da USPRezende, Solange OliveiraTonon, Vitor Rodrigues2021-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-10052021-132937/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-05-10T19:39:03Zoai:teses.usp.br:tde-10052021-132937Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-05-10T19:39:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto Generating interpretable recommendations in recommender systems using context |
title |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto |
spellingShingle |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto Tonon, Vitor Rodrigues Contextual information Heterogeneous network Informação contextual Interpretabilidade Interpretability Recommender systems Redes heterogêneas Sistemas de recomendação |
title_short |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto |
title_full |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto |
title_fullStr |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto |
title_full_unstemmed |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto |
title_sort |
Geração de recomendações interpretáveis em sistemas de recomendação utilizando contexto |
author |
Tonon, Vitor Rodrigues |
author_facet |
Tonon, Vitor Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rezende, Solange Oliveira |
dc.contributor.author.fl_str_mv |
Tonon, Vitor Rodrigues |
dc.subject.por.fl_str_mv |
Contextual information Heterogeneous network Informação contextual Interpretabilidade Interpretability Recommender systems Redes heterogêneas Sistemas de recomendação |
topic |
Contextual information Heterogeneous network Informação contextual Interpretabilidade Interpretability Recommender systems Redes heterogêneas Sistemas de recomendação |
description |
Usuários enfrentam dificuldades em escolher produtos e serviços na Web devido a grande variedade de possibilidades de escolha. Nesse contexto, os sistemas de recomendação têm como objetivo auxiliar indivíduos a identificarem itens de interesse em um conjunto de opções. As abordagens tradicionais de sistemas de recomendação focam em recomendar itens mais relevantes para usuários individuais, não levando em consideração o contexto dos usuários. Porém, em muitas aplicações reais, é importante também considerar informações contextuais, por meio dos sistemas de recomendação sensíveis ao contexto, uma vez que estudos indicam que o uso de tais informações pode melhorar a acurácia das recomendações. Existem diversos tipos de sistemas de recomendação, como os baseados em conteúdo, na vizinhança de usuários e itens, baseados em fatoração de matrizes e em deep learning. No entanto, a maioria desses sistemas são considerados caixas-pretas, já que não oferecem transparência ao processo de recomendação, o que dificulta que usuários confiem nas recomendações apresentadas. Nesse sentido, fornecer recomendações interpretáveis tende a aumentar a confiança e a satisfação do usuário em relação ao sistema. O uso de explicações em sistemas de recomendação tem se mostrado uma área de pesquisa promissora, mas, ainda assim, poucos trabalhos exploraram a utilização de contexto como forma de gerar as explicações. Diante desse cenário, este projeto tem como objetivo propor o método HINCARS que gera recomendações interpretáveis utilizando informações contextuais. Os resultados obtidos mostraram que o método obteve resultados equiparáveis a um algoritmo estado-da-arte. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10052021-132937/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-10052021-132937/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256911460696064 |