O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger

Detalhes bibliográficos
Autor(a) principal: Iastremski, Priscilla
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/
Resumo: Dados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho.
id USP_ad244ff9e17cf65c5bf847b67f7f1cd1
oai_identifier_str oai:teses.usp.br:tde-15052011-173459
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-KriegerThe crossed-product of a C*-algebra by an endomorphism and the Cuntz-Krieger algebraC*-algebraC*-álgebrasCrossed-productCuntz-KriegerCuntz-KriegerProduto-cruzadoDados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho.Given A a C*-algebra with unit and \\alpha an *-endomorphism of A, a transfer operator for the pair (A, \\alpha) is a continuous positive linear map L: A --> A such that L(\\alpha(a)b) = a L(b), for all a, b \\in A. Under these conditions , we denote by T(A, \\alpha, L) the universal C*-algebra with unit generated by A and an element S subject to the relations Sa = \\alpha(a)S and S*aS = L(a). A redundancy is defined as a pair (a, k) \\in A x \\overline{ASS* A} such that abS = akS, for all b \\in A. In tjis work we define the C*-algebra called crossed-product as the quotient of T(A, \\alpha, L) by the closed two-sided ideal I generated by the set of all differences a-k, for all redundancies (a, k) such that a \\in \\overline, where by R we mean Im \\alpha. We prove that when \\alpha is injective with an hereditary range, then the crossed-product is isomorphic to the universal C*-algebra with unit, which we denote by U(A, \\alpha), generated by A and an isometry T subject to the relation \\alpha(a) = TaT*, for all a \\in A. We also prove that the Cuntz-Krieger algebra O_A can be characterized as the crossed-product we define in this work.Biblioteca Digitais de Teses e Dissertações da USPCerri, CristinaIastremski, Priscilla2011-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-15052011-173459Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
The crossed-product of a C*-algebra by an endomorphism and the Cuntz-Krieger algebra
title O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
spellingShingle O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
Iastremski, Priscilla
C*-algebra
C*-álgebras
Crossed-product
Cuntz-Krieger
Cuntz-Krieger
Produto-cruzado
title_short O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
title_full O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
title_fullStr O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
title_full_unstemmed O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
title_sort O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
author Iastremski, Priscilla
author_facet Iastremski, Priscilla
author_role author
dc.contributor.none.fl_str_mv Cerri, Cristina
dc.contributor.author.fl_str_mv Iastremski, Priscilla
dc.subject.por.fl_str_mv C*-algebra
C*-álgebras
Crossed-product
Cuntz-Krieger
Cuntz-Krieger
Produto-cruzado
topic C*-algebra
C*-álgebras
Crossed-product
Cuntz-Krieger
Cuntz-Krieger
Produto-cruzado
description Dados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090739873775616