Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas

Detalhes bibliográficos
Autor(a) principal: Hobi Junior, Edwin
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052009-103009/
Resumo: O entendimento e o controle das propriedades de materiais nanoestruturados em função do seu tamanho, forma e composição, por exemplo, é fundamental para o avanço da chamada nanotecnologia. Nanofios metálicos, em particular, são interessantes pois possibilitam a investigação de propriedades de sistemas com baixa dimensionalidade, além de serem considerados candidatos a elemento de interligação de unidades fundamentais de uma eletrônica no nível molecular. Efeitos de temperatura sobre o rompimento de nanofios monoatômicos de ouro puros e com impurezas de hidrogênio ou carbono foram investigados de modo sistemático, através da utilização do método de Dinâmica Molecular ab initio, na temperatura de 300 K. De acordo com a metodologia utilizada e as impurezas estudadas, os resultados mostraram que os sistemas são estáveis para longo tempo de simulação (20 ps) e que o hidrogênio é o candidato mais apropriado para explicar as distâncias Au-Au da ordem de 3.6 ºA que são observadas experimentalmente. Questões associadas à ruptura, tais como o entendimento do mecanismo físico envolvido no processo, o papel das flutuações térmicas e o efeito da presença de impureza, são discutidas com base em um modelo de triplas de átomos e de dados estatísticos obtidos de simulações de dinâmica molecular. A partir do modelo, a ruptura pôde ser entendida através de instabilidades observadas no perfil da superfície de energia potencial para ligações suficientemente estressadas. As flutuações térmicas seriam então as res- ponsáveis por levar o tamanho das triplas para os valores instáveis. Este modelo foi capaz ainda de explicar fatos como a não observação de eventos de ruptura em ligações do tipo Au-X (X=H,C), e a probabilidade maior de um fio com impureza de H ou C romper na ligação Au-Au mais afastada da impureza. O estudo de efeitos de tempe- ratura foi estendido para 106T6500 K. Nanofios com outros tamanhos de cadeia (3, 4 ou 6 átomos), na temperatura de 300 K, também foram estudados. De forma geral, os resultados mostraram que a temperatura possui essencialmente o efeito de aumentar a amplitude das flutuações, não modificando os valores médios das distâncias interatômicas da cadeia. Um estudo estatístico das simulações permitiu ainda entender o comportamento destas flutuações, que escala com a raiz quadrada da temperatura do sistema. Um aspecto importante das simulações envolvendo átomos de hidrogênio refere-se a efeitos quânticos que estariam sendo negligenciados. De acordo com os resultados obtidos da dinâmica, o movimento vibracional transversal do H conferia ao sistema uma instabilidade que supostamente seria fruto de uma abordagem inapropriada, já que graus de liberdade clássicos estariam sendo excitados indevidamente. Foi proposto então uma metodologia onde o movimento vibracional do H é substituído por um movimento \"adiabático\", de modo que ele se acomoda (quase) instantaneamente ao movimento mais lento do resto do sistema, através de seu posicionamento no mínimo do potencial local. Dentro desta perspectiva, esta metodologia seria mais realista que a dinâmica realizada de forma convencional, fornecendo, portanto, valores com maior nível de confiança. A distância Au-H-Au aumentou com a utilização desta aproximação, concordando com medidas experimentais de distâncias Au-Au em cadeias monoatômicas da ordem de 3.6 ºA.
id USP_adc000dc77a90e0c2f71719450af371a
oai_identifier_str oai:teses.usp.br:tde-12052009-103009
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezasTheoretical studies of teh dynamical evolution of gold nanowires with and without impuritiesComputational physicsDinâmica molecularFísica computacionalMolecular dynamicsNanoestruturasNanofiosNanostructuresNanowiresO entendimento e o controle das propriedades de materiais nanoestruturados em função do seu tamanho, forma e composição, por exemplo, é fundamental para o avanço da chamada nanotecnologia. Nanofios metálicos, em particular, são interessantes pois possibilitam a investigação de propriedades de sistemas com baixa dimensionalidade, além de serem considerados candidatos a elemento de interligação de unidades fundamentais de uma eletrônica no nível molecular. Efeitos de temperatura sobre o rompimento de nanofios monoatômicos de ouro puros e com impurezas de hidrogênio ou carbono foram investigados de modo sistemático, através da utilização do método de Dinâmica Molecular ab initio, na temperatura de 300 K. De acordo com a metodologia utilizada e as impurezas estudadas, os resultados mostraram que os sistemas são estáveis para longo tempo de simulação (20 ps) e que o hidrogênio é o candidato mais apropriado para explicar as distâncias Au-Au da ordem de 3.6 ºA que são observadas experimentalmente. Questões associadas à ruptura, tais como o entendimento do mecanismo físico envolvido no processo, o papel das flutuações térmicas e o efeito da presença de impureza, são discutidas com base em um modelo de triplas de átomos e de dados estatísticos obtidos de simulações de dinâmica molecular. A partir do modelo, a ruptura pôde ser entendida através de instabilidades observadas no perfil da superfície de energia potencial para ligações suficientemente estressadas. As flutuações térmicas seriam então as res- ponsáveis por levar o tamanho das triplas para os valores instáveis. Este modelo foi capaz ainda de explicar fatos como a não observação de eventos de ruptura em ligações do tipo Au-X (X=H,C), e a probabilidade maior de um fio com impureza de H ou C romper na ligação Au-Au mais afastada da impureza. O estudo de efeitos de tempe- ratura foi estendido para 106T6500 K. Nanofios com outros tamanhos de cadeia (3, 4 ou 6 átomos), na temperatura de 300 K, também foram estudados. De forma geral, os resultados mostraram que a temperatura possui essencialmente o efeito de aumentar a amplitude das flutuações, não modificando os valores médios das distâncias interatômicas da cadeia. Um estudo estatístico das simulações permitiu ainda entender o comportamento destas flutuações, que escala com a raiz quadrada da temperatura do sistema. Um aspecto importante das simulações envolvendo átomos de hidrogênio refere-se a efeitos quânticos que estariam sendo negligenciados. De acordo com os resultados obtidos da dinâmica, o movimento vibracional transversal do H conferia ao sistema uma instabilidade que supostamente seria fruto de uma abordagem inapropriada, já que graus de liberdade clássicos estariam sendo excitados indevidamente. Foi proposto então uma metodologia onde o movimento vibracional do H é substituído por um movimento \"adiabático\", de modo que ele se acomoda (quase) instantaneamente ao movimento mais lento do resto do sistema, através de seu posicionamento no mínimo do potencial local. Dentro desta perspectiva, esta metodologia seria mais realista que a dinâmica realizada de forma convencional, fornecendo, portanto, valores com maior nível de confiança. A distância Au-H-Au aumentou com a utilização desta aproximação, concordando com medidas experimentais de distâncias Au-Au em cadeias monoatômicas da ordem de 3.6 ºA.The understanding and control of the properties of nanostructured materials as a function of their length, shape and composition, for example, is fundamental to improve the so called nanotechnology. Gold nanowires, in particular, are interesting since they not only allow the investigation of the properties of low-dimensional systems, but have also been thought of as candidates for nanometric interconnection elements. Temperature effects in the stability of pure, H or C doped atomically thin gold nanowires were systematically investigated with ab initio Molecular Dynamics simulations at temperature of 300 K. The results showed that the systems are stable for long time simulations (20 ps), and within the present hypothesis, the hydrogen is the best candidate to explain the large Au-Au distances of order of 3.6 ºA that are experimentally observed. Questions about the nanowires rupture, such as the understanding of the physical mechanism involved, the role of the thermal fluctuations and the effect of impurities, are discussed in accordance with a model of triplet of atoms and the statistical results obtained from the molecular dynamics simulations. The triplets model allowed the understanding of the rupture through instabilities observed in the potential energy surface profile when the bonds are su±ciently stressed. Thermal fluctuations would be responsible to lead to these unstable distances. Additionally, this model was able to explain facts such as why the rupture never occurred at Au-X bonds (X=H,C), and the higher probability that a nanowire with H or C impurity has to break on the Au-Au bond more distant from impurity. The study of temperature effects was extended to 106T6500 K. Nanowires with other length chains (3, 4 or 6 atoms) at temperature of 300 K were also studied. In general, the results showed that the effect of temperature is basically to increase the amplitude of the fluctuations, however, it does not modify the average interatomic distances of the chain. A statistical study also allowed to understand the behavior of these fluctuations, which scale with the square root of the temperature. An important aspect of the simulations involving hydrogen atoms is associated with quantum effects that are not taken into account. According to the molecular dynamics results, the transversal vibration of the H atom provided an instability to the system, that supposedly would be produced by an inappropriate treatment, since these degrees of freedom would be inappropriately excited. So, a methodology was proposed where the vibrational motion of the H is replaced by an \\adiabatic\" motion, with the hydrogen following (quasi) instantaneously the slower motion of the remainder system, being positioned at the local minimum of the potential. In this picture, this methodology would be more realistic than the conventional dynamics, allowing to obtain more reliable results. The Au-H-Au distance increased in this approximation, being in good agreement with the Au-Au distances measured experimentally in monoatomic chains, of the order of 3.6 ºA.Biblioteca Digitais de Teses e Dissertações da USPSilva, Antonio Jose Roque daHobi Junior, Edwin2009-04-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052009-103009/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:59Zoai:teses.usp.br:tde-12052009-103009Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
Theoretical studies of teh dynamical evolution of gold nanowires with and without impurities
title Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
spellingShingle Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
Hobi Junior, Edwin
Computational physics
Dinâmica molecular
Física computacional
Molecular dynamics
Nanoestruturas
Nanofios
Nanostructures
Nanowires
title_short Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
title_full Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
title_fullStr Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
title_full_unstemmed Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
title_sort Estudo teórico da evolução dinâmica de nanofios de ouro puros e com impurezas
author Hobi Junior, Edwin
author_facet Hobi Junior, Edwin
author_role author
dc.contributor.none.fl_str_mv Silva, Antonio Jose Roque da
dc.contributor.author.fl_str_mv Hobi Junior, Edwin
dc.subject.por.fl_str_mv Computational physics
Dinâmica molecular
Física computacional
Molecular dynamics
Nanoestruturas
Nanofios
Nanostructures
Nanowires
topic Computational physics
Dinâmica molecular
Física computacional
Molecular dynamics
Nanoestruturas
Nanofios
Nanostructures
Nanowires
description O entendimento e o controle das propriedades de materiais nanoestruturados em função do seu tamanho, forma e composição, por exemplo, é fundamental para o avanço da chamada nanotecnologia. Nanofios metálicos, em particular, são interessantes pois possibilitam a investigação de propriedades de sistemas com baixa dimensionalidade, além de serem considerados candidatos a elemento de interligação de unidades fundamentais de uma eletrônica no nível molecular. Efeitos de temperatura sobre o rompimento de nanofios monoatômicos de ouro puros e com impurezas de hidrogênio ou carbono foram investigados de modo sistemático, através da utilização do método de Dinâmica Molecular ab initio, na temperatura de 300 K. De acordo com a metodologia utilizada e as impurezas estudadas, os resultados mostraram que os sistemas são estáveis para longo tempo de simulação (20 ps) e que o hidrogênio é o candidato mais apropriado para explicar as distâncias Au-Au da ordem de 3.6 ºA que são observadas experimentalmente. Questões associadas à ruptura, tais como o entendimento do mecanismo físico envolvido no processo, o papel das flutuações térmicas e o efeito da presença de impureza, são discutidas com base em um modelo de triplas de átomos e de dados estatísticos obtidos de simulações de dinâmica molecular. A partir do modelo, a ruptura pôde ser entendida através de instabilidades observadas no perfil da superfície de energia potencial para ligações suficientemente estressadas. As flutuações térmicas seriam então as res- ponsáveis por levar o tamanho das triplas para os valores instáveis. Este modelo foi capaz ainda de explicar fatos como a não observação de eventos de ruptura em ligações do tipo Au-X (X=H,C), e a probabilidade maior de um fio com impureza de H ou C romper na ligação Au-Au mais afastada da impureza. O estudo de efeitos de tempe- ratura foi estendido para 106T6500 K. Nanofios com outros tamanhos de cadeia (3, 4 ou 6 átomos), na temperatura de 300 K, também foram estudados. De forma geral, os resultados mostraram que a temperatura possui essencialmente o efeito de aumentar a amplitude das flutuações, não modificando os valores médios das distâncias interatômicas da cadeia. Um estudo estatístico das simulações permitiu ainda entender o comportamento destas flutuações, que escala com a raiz quadrada da temperatura do sistema. Um aspecto importante das simulações envolvendo átomos de hidrogênio refere-se a efeitos quânticos que estariam sendo negligenciados. De acordo com os resultados obtidos da dinâmica, o movimento vibracional transversal do H conferia ao sistema uma instabilidade que supostamente seria fruto de uma abordagem inapropriada, já que graus de liberdade clássicos estariam sendo excitados indevidamente. Foi proposto então uma metodologia onde o movimento vibracional do H é substituído por um movimento \"adiabático\", de modo que ele se acomoda (quase) instantaneamente ao movimento mais lento do resto do sistema, através de seu posicionamento no mínimo do potencial local. Dentro desta perspectiva, esta metodologia seria mais realista que a dinâmica realizada de forma convencional, fornecendo, portanto, valores com maior nível de confiança. A distância Au-H-Au aumentou com a utilização desta aproximação, concordando com medidas experimentais de distâncias Au-Au em cadeias monoatômicas da ordem de 3.6 ºA.
publishDate 2009
dc.date.none.fl_str_mv 2009-04-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052009-103009/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052009-103009/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256892746760192