Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil

Detalhes bibliográficos
Autor(a) principal: Ortega, Thais Andrea
Data de Publicação: 2005
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19112005-155423/
Resumo: Atualmente há uma quantidade considerável de informação sobre o comportamento da economia à disposição da autoridade monetária, cuja decisão é provavelmente baseada nesse grande conjunto de dados. Entretanto, grande parte das análises empíricas de política monetária é baseada em modelos de pequena escala, e o problema de variáveis omitidas pode ser relevante. Uma literatura mais recente mostrou que grandes conjuntos de séries macroeconômicas podem ser modelados usando fatores dinâmicos, que são considerados um resumo da informação contida nos dados. Neste trabalho combinamos os fatores extraídos de 178 séries de tempo com os modelos tradicionais de pequena escala para analisar a política monetária no Brasil. Os fatores estimados são usados como instrumentos em regras de Taylor forward looking e como regressores adicionais em VAR´s. A informação extraída de grandes conjuntos de dados mostrou-se bem útil na análise empírica da política monetária.
id USP_af3cef2213d614791ecdf4d47141c76c
oai_identifier_str oai:teses.usp.br:tde-19112005-155423
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil Large datasets, factor model and monetary policy in Brazilfactor modelmodelo de fatoresmonetary policypolítica monetáriaregra de TaylorTaylor ruleAtualmente há uma quantidade considerável de informação sobre o comportamento da economia à disposição da autoridade monetária, cuja decisão é provavelmente baseada nesse grande conjunto de dados. Entretanto, grande parte das análises empíricas de política monetária é baseada em modelos de pequena escala, e o problema de variáveis omitidas pode ser relevante. Uma literatura mais recente mostrou que grandes conjuntos de séries macroeconômicas podem ser modelados usando fatores dinâmicos, que são considerados um resumo da informação contida nos dados. Neste trabalho combinamos os fatores extraídos de 178 séries de tempo com os modelos tradicionais de pequena escala para analisar a política monetária no Brasil. Os fatores estimados são usados como instrumentos em regras de Taylor forward looking e como regressores adicionais em VAR´s. A informação extraída de grandes conjuntos de dados mostrou-se bem útil na análise empírica da política monetária. Nowadays there is a considerable amount of information on the behavior of the economy available and central bankers can be expected to base their decisions on this very large information set. Nevertheless, most of the empirical analysis of monetary policy has been based on small scale models, and omitted information can be a relevant problem. Recent time-series techniques have shown that large datasets can be modeled using dynamic factors, which are considered a summary of the information in the data. In this work we combine the factors extracted from 178 time series with more traditional small scale models to analyze monetary policy in Brazil. The estimated factors are used as instruments in forward looking Taylor rules and as additional regressors in VAR´s. The information extracted from large datasets turns out to be quite useful for the empirical analysis of monetary policy.Biblioteca Digitais de Teses e Dissertações da USPNakane, Marcio IssaoOrtega, Thais Andrea2005-03-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/12/12138/tde-19112005-155423/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:49Zoai:teses.usp.br:tde-19112005-155423Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
Large datasets, factor model and monetary policy in Brazil
title Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
spellingShingle Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
Ortega, Thais Andrea
factor model
modelo de fatores
monetary policy
política monetária
regra de Taylor
Taylor rule
title_short Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
title_full Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
title_fullStr Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
title_full_unstemmed Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
title_sort Grandes conjuntos de dados, modelo de fatores e a condução da política monetária no Brasil
author Ortega, Thais Andrea
author_facet Ortega, Thais Andrea
author_role author
dc.contributor.none.fl_str_mv Nakane, Marcio Issao
dc.contributor.author.fl_str_mv Ortega, Thais Andrea
dc.subject.por.fl_str_mv factor model
modelo de fatores
monetary policy
política monetária
regra de Taylor
Taylor rule
topic factor model
modelo de fatores
monetary policy
política monetária
regra de Taylor
Taylor rule
description Atualmente há uma quantidade considerável de informação sobre o comportamento da economia à disposição da autoridade monetária, cuja decisão é provavelmente baseada nesse grande conjunto de dados. Entretanto, grande parte das análises empíricas de política monetária é baseada em modelos de pequena escala, e o problema de variáveis omitidas pode ser relevante. Uma literatura mais recente mostrou que grandes conjuntos de séries macroeconômicas podem ser modelados usando fatores dinâmicos, que são considerados um resumo da informação contida nos dados. Neste trabalho combinamos os fatores extraídos de 178 séries de tempo com os modelos tradicionais de pequena escala para analisar a política monetária no Brasil. Os fatores estimados são usados como instrumentos em regras de Taylor forward looking e como regressores adicionais em VAR´s. A informação extraída de grandes conjuntos de dados mostrou-se bem útil na análise empírica da política monetária.
publishDate 2005
dc.date.none.fl_str_mv 2005-03-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19112005-155423/
url http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19112005-155423/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257135595913216