Sunflowers theorems in computational complexity

Detalhes bibliográficos
Autor(a) principal: Cavalar, Bruno Pasqualotto
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25112020-162107/
Resumo: Alexander Razborov (1985) developed the approximation method to obtain lower bounds on the size of monotone circuits deciding if a graph contains a clique. Given a small circuit, this technique consists in finding a monotone Boolean function which approximates the circuit in a distribution of interest, but makes computation errors in that same distribution. To prove that such a function is indeed a good approximation, Razborov used the sunflower lemma of Erds and Rado (1960). This technique was improved by Alon and Boppana (1987) to show lower bounds for a larger class of monotone computational problems. In that same work, the authors also improved the result of Razborov for the clique problem, using a relaxed variant of sunflowers. More recently, Rossman (2010) developed another variant of sunflowers, now called robust sunflowers, to obtain lower bounds for the clique problem in random graphs. In the following years, the concept of robust sunflowers found applications in many areas of computational complexity, such as DNF sparsification, randomness extractors and lifting theorems. Even more recent was the breakthrough result of Alweiss, Lovett, Wu and Zhang (2020), which improved Rossmans bound on the size of hypergraphs without robust sunflowers. This result was employed to obtain the most significant progress on the sunflower conjecture since its inception in 1960. In this work, we will show how the recent progresses in sunflower theorems can be applied to improve monotone circuit lower bounds. In particular, we will show the best monotone circuit lower bound obtained up to now, thus breaking a 20-year old record of Harnik and Raz (2000). We will also improve the lower bound of Alon and Boppana for the clique function in a slightly more restricted range of clique sizes.
id USP_af46511e78941f55db07b5f1f580b3fb
oai_identifier_str oai:teses.usp.br:tde-25112020-162107
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sunflowers theorems in computational complexityTeoremas de girassol em complexidade computacionalCircuit complexityCombinatóriaCombinatória extremalCombinatória probabilisticaCombinatoricsComplexidade computationalComplexidade de circuitosComplexidade de circuitos monótonosComputational complexityExtremal combinatoricsExtremal set theoryGirassóisMonotone circuit complexityProbabilistic combinatoricsSunflowersTeoria extremal dos conjuntosAlexander Razborov (1985) developed the approximation method to obtain lower bounds on the size of monotone circuits deciding if a graph contains a clique. Given a small circuit, this technique consists in finding a monotone Boolean function which approximates the circuit in a distribution of interest, but makes computation errors in that same distribution. To prove that such a function is indeed a good approximation, Razborov used the sunflower lemma of Erds and Rado (1960). This technique was improved by Alon and Boppana (1987) to show lower bounds for a larger class of monotone computational problems. In that same work, the authors also improved the result of Razborov for the clique problem, using a relaxed variant of sunflowers. More recently, Rossman (2010) developed another variant of sunflowers, now called robust sunflowers, to obtain lower bounds for the clique problem in random graphs. In the following years, the concept of robust sunflowers found applications in many areas of computational complexity, such as DNF sparsification, randomness extractors and lifting theorems. Even more recent was the breakthrough result of Alweiss, Lovett, Wu and Zhang (2020), which improved Rossmans bound on the size of hypergraphs without robust sunflowers. This result was employed to obtain the most significant progress on the sunflower conjecture since its inception in 1960. In this work, we will show how the recent progresses in sunflower theorems can be applied to improve monotone circuit lower bounds. In particular, we will show the best monotone circuit lower bound obtained up to now, thus breaking a 20-year old record of Harnik and Raz (2000). We will also improve the lower bound of Alon and Boppana for the clique function in a slightly more restricted range of clique sizes.Alexander Razborov (1985) desenvolveu o método das aproximações para obter cotas inferiores para o tamanho de circuitos monótonos que decidem se um grafo contém uma clique. Dado um circuito monótono \"pequeno\", essa técnica consiste em encontrar uma função Booleana monótona que aproxima o circuito numa distribuição de interesse, mas comete erros de computação nessa mesma distribuição. Para provar que tal função é de fato uma boa aproximação, Razborov utilizou o lema dos girassóis de Erd\\Hs e Rado (1960). Essa técnica foi aprimorada por Alon e Boppana (1987) para mostrar cotas inferiores para uma gama muito maior de problemas computacionais monótonos. Nesse trabalho, os autores também melhoraram o resultado de Razborov para o problema da clique, utilizando uma variação relaxada de girassóis. Mais recentemente, Rossman (2010) desenvolveu uma outra variação de girassóis, hoje chamada de \"girassóis robustos\", para obter cotas inferiores para o problema da clique em grafos aleatórios. Em seguida, o conceito de girassóis robustos encontrou aplicações em várias áreas da complexidade computacional, tais como esparsificação de DNFs, extratores de aleatoriedade e teoremas de \"lifting\". Ainda mais recente foi um resultado impactante de Alweiss, Lovett, Wu e Zhang (2020), que mostrou cotas melhores que a de Rossman para girassóis robustos. Esse resultado foi utilizado para obter o progresso mais significativo na conjectura dos girassóis desde a sua origem em 1960. Nesse trabalho, vamos mostrar como os desenvolvimentos recentes em teoremas de girassol podem ser aplicados para melhorar cotas inferiores para circuitos monótonos. Em particular, vamos mostrar a melhor cota inferior para um circuito monótono obtida até o momento, quebrando um recorde de 20 anos obtido por Harnik e Raz (2000). Iremos também melhorar a cota inferior de Alon e Boppana para a função clique numa faixa levemente mais restrita de tamanhos de clique.Biblioteca Digitais de Teses e Dissertações da USPKohayakawa, YoshiharuCavalar, Bruno Pasqualotto2020-09-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-25112020-162107/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-11-27T18:16:02Zoai:teses.usp.br:tde-25112020-162107Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-11-27T18:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sunflowers theorems in computational complexity
Teoremas de girassol em complexidade computacional
title Sunflowers theorems in computational complexity
spellingShingle Sunflowers theorems in computational complexity
Cavalar, Bruno Pasqualotto
Circuit complexity
Combinatória
Combinatória extremal
Combinatória probabilistica
Combinatorics
Complexidade computational
Complexidade de circuitos
Complexidade de circuitos monótonos
Computational complexity
Extremal combinatorics
Extremal set theory
Girassóis
Monotone circuit complexity
Probabilistic combinatorics
Sunflowers
Teoria extremal dos conjuntos
title_short Sunflowers theorems in computational complexity
title_full Sunflowers theorems in computational complexity
title_fullStr Sunflowers theorems in computational complexity
title_full_unstemmed Sunflowers theorems in computational complexity
title_sort Sunflowers theorems in computational complexity
author Cavalar, Bruno Pasqualotto
author_facet Cavalar, Bruno Pasqualotto
author_role author
dc.contributor.none.fl_str_mv Kohayakawa, Yoshiharu
dc.contributor.author.fl_str_mv Cavalar, Bruno Pasqualotto
dc.subject.por.fl_str_mv Circuit complexity
Combinatória
Combinatória extremal
Combinatória probabilistica
Combinatorics
Complexidade computational
Complexidade de circuitos
Complexidade de circuitos monótonos
Computational complexity
Extremal combinatorics
Extremal set theory
Girassóis
Monotone circuit complexity
Probabilistic combinatorics
Sunflowers
Teoria extremal dos conjuntos
topic Circuit complexity
Combinatória
Combinatória extremal
Combinatória probabilistica
Combinatorics
Complexidade computational
Complexidade de circuitos
Complexidade de circuitos monótonos
Computational complexity
Extremal combinatorics
Extremal set theory
Girassóis
Monotone circuit complexity
Probabilistic combinatorics
Sunflowers
Teoria extremal dos conjuntos
description Alexander Razborov (1985) developed the approximation method to obtain lower bounds on the size of monotone circuits deciding if a graph contains a clique. Given a small circuit, this technique consists in finding a monotone Boolean function which approximates the circuit in a distribution of interest, but makes computation errors in that same distribution. To prove that such a function is indeed a good approximation, Razborov used the sunflower lemma of Erds and Rado (1960). This technique was improved by Alon and Boppana (1987) to show lower bounds for a larger class of monotone computational problems. In that same work, the authors also improved the result of Razborov for the clique problem, using a relaxed variant of sunflowers. More recently, Rossman (2010) developed another variant of sunflowers, now called robust sunflowers, to obtain lower bounds for the clique problem in random graphs. In the following years, the concept of robust sunflowers found applications in many areas of computational complexity, such as DNF sparsification, randomness extractors and lifting theorems. Even more recent was the breakthrough result of Alweiss, Lovett, Wu and Zhang (2020), which improved Rossmans bound on the size of hypergraphs without robust sunflowers. This result was employed to obtain the most significant progress on the sunflower conjecture since its inception in 1960. In this work, we will show how the recent progresses in sunflower theorems can be applied to improve monotone circuit lower bounds. In particular, we will show the best monotone circuit lower bound obtained up to now, thus breaking a 20-year old record of Harnik and Raz (2000). We will also improve the lower bound of Alon and Boppana for the clique function in a slightly more restricted range of clique sizes.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25112020-162107/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-25112020-162107/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257347196452864