Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.

Detalhes bibliográficos
Autor(a) principal: Faria, Alexandre Martuscelli
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3150/tde-09022022-090526/
Resumo: The scientific community efforts in the field of renewable energy have been focused on avoiding an increase of the average global temperature that surpasses the 1.5C mark. In that scenario, wind energy had experienced a rapid and continuous growth in its installed capacity worldwide along the past two decades. This expansion however is bounded synchronously by multiple factors, such as land availability and impacts on the environment, fauna and people, once wind farms are being pushed more and more to the vicinity of inhabited areas. One of the major concerns regarding newer technologies of horizontal axis wind turbines is maintaining the noise level in line with each local noise control regulations. As noise level is direct proportional to the wind turbine rotor diameter, and newer blades are becoming larger and larger because of the simultaneous increase on power output, it is mandatory to adopt the noise emission as a wind turbine blade design constraint and look after new blade geometries that combine both aerodynamic and aeroacoustic efficiency. PNoise is an airfoil and wind turbine noise prediction module developed at Poli-USP by Poli-Wind group in collaboration with TU-Berlin QBlade wind turbine blade design software. PNoise, through a 2D mathematical modeling, takes into account the sources of airfoil noise combined in order to have an accurate spectrum prediction and contribute to the design of quieter blades without lowering the power output. Airfoil noise consists of a synchronized effect of multiple sources, being the main sources the airfoil self-noise and the turbulent inflow noise. The mathematical modeling and integration of the latter within QBlade code is the main objective of this study. The turbulent inflow noise is caused by the interaction between turbulent scales and the airfoil surface. It tends to be dominant over airfoil self-noise in the low to mid frequency range (up to 2000 Hz) and is very sensitive to the pair turbulence integral length scale and intensity. Central to this study are the application of Amiet theory and its extensions, and also the discussion regarding turbulence spectrum modeling considering the usual von K´arm´an homogeneous and isotropic turbulence assumption and Batchelor rapid distortion theory (RDT) that adds anisotropy effects on noise. As it is known, atmospheric turbulence conditions are hardly obtained in a aeroacoustic tunnel setup, and so a distinct turbulence spectrum may be observed in each case. Therefore, both may be covered by PNoise novel turbulent inflow noise prediction method.
id USP_afcc8b3f812a205854d7e98c5708c64c
oai_identifier_str oai:teses.usp.br:tde-09022022-090526
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.Ruído de turbinas eólicas: Desenvolvimento de método de predição do ruído provocado por escoamento turbulento incidente baseado na teoria de Amiet.AeroacousticsAeroacústicaAerofóliosAirfoil noiseAmiet theoryEnergiaEnergias renováveisRenewable energyRuído de aerofólioTeoria de AmietTurbinas eólicasTurbulent inflow noiseWind turbinesThe scientific community efforts in the field of renewable energy have been focused on avoiding an increase of the average global temperature that surpasses the 1.5C mark. In that scenario, wind energy had experienced a rapid and continuous growth in its installed capacity worldwide along the past two decades. This expansion however is bounded synchronously by multiple factors, such as land availability and impacts on the environment, fauna and people, once wind farms are being pushed more and more to the vicinity of inhabited areas. One of the major concerns regarding newer technologies of horizontal axis wind turbines is maintaining the noise level in line with each local noise control regulations. As noise level is direct proportional to the wind turbine rotor diameter, and newer blades are becoming larger and larger because of the simultaneous increase on power output, it is mandatory to adopt the noise emission as a wind turbine blade design constraint and look after new blade geometries that combine both aerodynamic and aeroacoustic efficiency. PNoise is an airfoil and wind turbine noise prediction module developed at Poli-USP by Poli-Wind group in collaboration with TU-Berlin QBlade wind turbine blade design software. PNoise, through a 2D mathematical modeling, takes into account the sources of airfoil noise combined in order to have an accurate spectrum prediction and contribute to the design of quieter blades without lowering the power output. Airfoil noise consists of a synchronized effect of multiple sources, being the main sources the airfoil self-noise and the turbulent inflow noise. The mathematical modeling and integration of the latter within QBlade code is the main objective of this study. The turbulent inflow noise is caused by the interaction between turbulent scales and the airfoil surface. It tends to be dominant over airfoil self-noise in the low to mid frequency range (up to 2000 Hz) and is very sensitive to the pair turbulence integral length scale and intensity. Central to this study are the application of Amiet theory and its extensions, and also the discussion regarding turbulence spectrum modeling considering the usual von K´arm´an homogeneous and isotropic turbulence assumption and Batchelor rapid distortion theory (RDT) that adds anisotropy effects on noise. As it is known, atmospheric turbulence conditions are hardly obtained in a aeroacoustic tunnel setup, and so a distinct turbulence spectrum may be observed in each case. Therefore, both may be covered by PNoise novel turbulent inflow noise prediction method.Os esforços da comunidade científica no campo das energias renováveis tem se mantido focado em evitar que o acréscimo da temperatura média global ultrapasse a marca de 1.5C. Nesse cenário, a energia elétrica proveniente de fonte eólica tem experenciado uma rápida e contínua expansão em sua capacidade instalada global durante as duas últimas décadas. Essa expansão, entretanto, é balizada por múltiplos fatores síncronos, como a disponibilidade de terras e impactos relacionados ao ambiente, à fauna e às pessoas, ao se levar em consideração que esta expansão leva os parques eólicos para áreas cada vez mais próximas a regiões habitadas. Uma das grandes preocupações que vêm atreladas `as novas tecnologias de turbinas eólicas de eixo horizontal é que o nível de ruído seja mantido em compasso com as legislações de controle de ruído locais. Como o nível de ruído produzido por uma turbina eólica é diretamente proporcional ao diâmetro do rotor, e turbinas eólicas modernas apresentam pás cada vez maiores, por aumento simultâneo na conversão de energia, é mandatório que seja adotado o ruído como variável de projeto e buscar novas geometrias de pás que combinem eficiências aerodinâmica e aeroacústica. PNoise é um módulo para predição de ruído aerodinâmico de aerofólios e pás de turbinas eólicas desenvolvido na Poli-USP pelo grupo Poli-Wind em colaboração com a Universidade Tecnológica de Berlim, para o desenvolvimento do software de projetos de pás de turbinas eólicas QBlade. O PNoise, através de uma modelagem 2D, leva em consideração, de maneira combinada, as fontes de ruído aerodinâmico, de modo a obter uma predição precisa do espectro sonoro e contribuir para o projeto de pás mais silenciosas, sem que haja diminuição na efetividade da conversão de energia. O ruído de aerofólio consiste da combinação também sincronizada de múltiplas fontes, sendo as duas principais o ruído próprio do aerofólio e o ruído provocado pelo escoamento turbulento incidente. A modelagem matemática e a integração do último no código do QBlade é o principal objetivo deste estudo. O ruído provocado pelo escoamento turbulento incidente ´e causado pela interação entre escalas de turbulência e a superfície do aerofólio. Tende a ser dominante sobre o ruído próprio de aerofólio na faixa de frequências baixa a média (até cerca de 2000 Hz) e apresenta alta sensibilidade ao par escala integral de comprimento e intensidade de turbulência. Também centrais para este estudo são a aplicação da teoria de Amiet, suas extensões e a discussão com relação à modelagem do espectro de turbulência, considerando a usual adoção do espectro de turbulência homogêneo e isotrópico de von K´arm´an e a teoria de distorção rápida de Batchelor (RDT). Como sabido, condições de turbulência atmosférica dificilmente são obtidas em túnel aeroacústico e, portanto, um diferente comportamento espectral deverá ser observado em cada caso. Desta forma, ambas situações devem ser cobertas pelo novo método de predição de ruído provocado pelo escoamento turbulento incidente no PNoise.Biblioteca Digitais de Teses e Dissertações da USPPimenta, Marcos de MattosFaria, Alexandre Martuscelli2021-12-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3150/tde-09022022-090526/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-02-11T12:04:02Zoai:teses.usp.br:tde-09022022-090526Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-02-11T12:04:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
Ruído de turbinas eólicas: Desenvolvimento de método de predição do ruído provocado por escoamento turbulento incidente baseado na teoria de Amiet.
title Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
spellingShingle Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
Faria, Alexandre Martuscelli
Aeroacoustics
Aeroacústica
Aerofólios
Airfoil noise
Amiet theory
Energia
Energias renováveis
Renewable energy
Ruído de aerofólio
Teoria de Amiet
Turbinas eólicas
Turbulent inflow noise
Wind turbines
title_short Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
title_full Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
title_fullStr Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
title_full_unstemmed Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
title_sort Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.
author Faria, Alexandre Martuscelli
author_facet Faria, Alexandre Martuscelli
author_role author
dc.contributor.none.fl_str_mv Pimenta, Marcos de Mattos
dc.contributor.author.fl_str_mv Faria, Alexandre Martuscelli
dc.subject.por.fl_str_mv Aeroacoustics
Aeroacústica
Aerofólios
Airfoil noise
Amiet theory
Energia
Energias renováveis
Renewable energy
Ruído de aerofólio
Teoria de Amiet
Turbinas eólicas
Turbulent inflow noise
Wind turbines
topic Aeroacoustics
Aeroacústica
Aerofólios
Airfoil noise
Amiet theory
Energia
Energias renováveis
Renewable energy
Ruído de aerofólio
Teoria de Amiet
Turbinas eólicas
Turbulent inflow noise
Wind turbines
description The scientific community efforts in the field of renewable energy have been focused on avoiding an increase of the average global temperature that surpasses the 1.5C mark. In that scenario, wind energy had experienced a rapid and continuous growth in its installed capacity worldwide along the past two decades. This expansion however is bounded synchronously by multiple factors, such as land availability and impacts on the environment, fauna and people, once wind farms are being pushed more and more to the vicinity of inhabited areas. One of the major concerns regarding newer technologies of horizontal axis wind turbines is maintaining the noise level in line with each local noise control regulations. As noise level is direct proportional to the wind turbine rotor diameter, and newer blades are becoming larger and larger because of the simultaneous increase on power output, it is mandatory to adopt the noise emission as a wind turbine blade design constraint and look after new blade geometries that combine both aerodynamic and aeroacoustic efficiency. PNoise is an airfoil and wind turbine noise prediction module developed at Poli-USP by Poli-Wind group in collaboration with TU-Berlin QBlade wind turbine blade design software. PNoise, through a 2D mathematical modeling, takes into account the sources of airfoil noise combined in order to have an accurate spectrum prediction and contribute to the design of quieter blades without lowering the power output. Airfoil noise consists of a synchronized effect of multiple sources, being the main sources the airfoil self-noise and the turbulent inflow noise. The mathematical modeling and integration of the latter within QBlade code is the main objective of this study. The turbulent inflow noise is caused by the interaction between turbulent scales and the airfoil surface. It tends to be dominant over airfoil self-noise in the low to mid frequency range (up to 2000 Hz) and is very sensitive to the pair turbulence integral length scale and intensity. Central to this study are the application of Amiet theory and its extensions, and also the discussion regarding turbulence spectrum modeling considering the usual von K´arm´an homogeneous and isotropic turbulence assumption and Batchelor rapid distortion theory (RDT) that adds anisotropy effects on noise. As it is known, atmospheric turbulence conditions are hardly obtained in a aeroacoustic tunnel setup, and so a distinct turbulence spectrum may be observed in each case. Therefore, both may be covered by PNoise novel turbulent inflow noise prediction method.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3150/tde-09022022-090526/
url https://www.teses.usp.br/teses/disponiveis/3/3150/tde-09022022-090526/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090538952982528