Compact models of resonant tunneling diodes

Detalhes bibliográficos
Autor(a) principal: Celino, Daniel Ricardo
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18155/tde-08102024-155735/
Resumo:  Due to the growing demand for technologies capable of operating in the Terahertz (THz) frequency range, the Resonant Tunneling Diode (RTD) has attracted renewed interest from the academic community. RTD is a promising candidate for digital and analog applications due to its intrinsic negative differential resistance (NDR) characteristics, high switching speed, and flexible design requirements.  In this framework, this doctoral thesis deals with the compact modeling of the current-voltage (I-V) characteristics of double potential barrier resonant tunneling diodes. For this purpose, it is initially necessary to calculate the energy levels of the eigenstates for the quantum well of finite height present in the semiconductor structures of RTDs. However, determining energy levels for finite quantum wells is only possible through the resolution of transcendental equations using some numerical routine, thereby not allowing an exact analytical solution. Thus, fully analytical approximate solutions were developed to calculate energy levels in rectangular quantum wells of finite height, symmetric and asymmetric, with excellent agreement to exact solutions.  Next, taking the Tsu-Esaki formalism as a starting point to describe carrier transport in the RTD, we consider the general distribution of the electrical potential in the semiconductor device, including the formation of the accumulation and depletion space charge regions, as well as the charge in the quantum well. Furthermore, the scattering experienced by the carriers during the tunneling process through the double potential barrier region was also considered.  The I-V model developed encompasses two distinct cases. The first case describes RTDs, in which, due to the physical, parametric and geometric characteristics of the device, electrons in the emitter have a three-dimensional (3D) density of states. The second case occurs particularly in RTDs employing spacer layers with low doping levels. In this case, the accumulation layer formed in the RTD, adjacent to the double barrier region, is such that the electrons in the emitter have a two-dimensional (2D) density of states.  With the analytical model to calculate energy levels in a quantum well and the model developed to describe the distribution of the electrical potential profile in the RTD, compact I-V characteristic models of RTDs 3D-2D and 2D-2D were proposed. In this way, this work contributes to the compact modeling of RTDs, aiming to help on the design of integrated circuits using these devices and taking into account the main physical phenomena relevant in the description of the electrical characteristics of the RTD, thus obtaining fully analytical and explicit models. The developed models were validated with experimental and numerical data, providing very good agreement.
id USP_b0c42173a46ee56ad34d5f9dbdb68c54
oai_identifier_str oai:teses.usp.br:tde-08102024-155735
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Compact models of resonant tunneling diodesModelos compactos de diodos de tunelamento ressonantecompact modeldiodo de tunelamento ressonantemodelo compactonanoelectronicsnanoeletrônicapoço quânticoquantum wellresonant tunneling diodeRTD 2D-2DRTD 2D-2DRTD 3D-2DRTD 3D-2D Due to the growing demand for technologies capable of operating in the Terahertz (THz) frequency range, the Resonant Tunneling Diode (RTD) has attracted renewed interest from the academic community. RTD is a promising candidate for digital and analog applications due to its intrinsic negative differential resistance (NDR) characteristics, high switching speed, and flexible design requirements.  In this framework, this doctoral thesis deals with the compact modeling of the current-voltage (I-V) characteristics of double potential barrier resonant tunneling diodes. For this purpose, it is initially necessary to calculate the energy levels of the eigenstates for the quantum well of finite height present in the semiconductor structures of RTDs. However, determining energy levels for finite quantum wells is only possible through the resolution of transcendental equations using some numerical routine, thereby not allowing an exact analytical solution. Thus, fully analytical approximate solutions were developed to calculate energy levels in rectangular quantum wells of finite height, symmetric and asymmetric, with excellent agreement to exact solutions.  Next, taking the Tsu-Esaki formalism as a starting point to describe carrier transport in the RTD, we consider the general distribution of the electrical potential in the semiconductor device, including the formation of the accumulation and depletion space charge regions, as well as the charge in the quantum well. Furthermore, the scattering experienced by the carriers during the tunneling process through the double potential barrier region was also considered.  The I-V model developed encompasses two distinct cases. The first case describes RTDs, in which, due to the physical, parametric and geometric characteristics of the device, electrons in the emitter have a three-dimensional (3D) density of states. The second case occurs particularly in RTDs employing spacer layers with low doping levels. In this case, the accumulation layer formed in the RTD, adjacent to the double barrier region, is such that the electrons in the emitter have a two-dimensional (2D) density of states.  With the analytical model to calculate energy levels in a quantum well and the model developed to describe the distribution of the electrical potential profile in the RTD, compact I-V characteristic models of RTDs 3D-2D and 2D-2D were proposed. In this way, this work contributes to the compact modeling of RTDs, aiming to help on the design of integrated circuits using these devices and taking into account the main physical phenomena relevant in the description of the electrical characteristics of the RTD, thus obtaining fully analytical and explicit models. The developed models were validated with experimental and numerical data, providing very good agreement. Devido à crescente demanda por tecnologias capazes de operar na faixa de frequência de Terahertz (THz) o Diodo de Tunelamento Ressonante (RTD) teve seu interesse renovado por parte da comunidade acadêmica. O RTD é considerado um candidato promissor para aplicações digitais e analógicas, devido à sua característica intrínseca de resistência diferencial negativa (NDR), alta velocidade de comutação e requisitos de design flexíveis.  Neste cenário, esta tese de doutorado trata da modelagem compacta e analítica da característica corrente-tensão (I-V) de diodos de tunelamento ressonante de dupla barreira de potencial. Com este propósito, é necessário inicialmente calcular os níveis de energia dos auto-estados do poço quântico de altura finita, presente nas estruturas semicondutoras de RTDs. Todavia, a determinação de níveis de energia, para poços quânticos finitos, somente é possível por meio da resolução de equações transcendentais ou por algum tipo de solução numérica, não permitindo, portanto, solução analítica exata. Desta forma foram desenvolvidas soluções aproximadas totalmente analíticas para o cálculo dos níveis de energia em poços quânticos retangulares de altura finita, simétricos e assimétricos, sendo verificada excelente concordância.  Em seguida, tendo como ponto de partida o formalismo de Tsu-Esaki para descrever o transporte de portadores no RTD, considerou-se a distribuição geral do potencial elétrico no dispositivo semicondutor, incluindo a formação das regiões de carga espacial de acumulação no emissor, armazenamento de carga no poço quântico e formação de uma região depleção no coletor. Além disso, considerou-se o espalhamento experimentado pelos portadores durante o processo de tunelamento através da região de dupla barreira de potencial.  O modelo I-V desenvolvido contempla dois casos distintos. O primeiro caso descreve o tunelamento ressonante de elétrons em RTDs, nos quais, devido as características físicas, paramétricas e geométricas do dispositivo, a região do emissor apresenta densidade de estados tridimensional (3D) para os elétrons. O segundo caso ocorre especialmente em RTDs com camadas espaçadoras com baixo nível de dopagem. Neste caso, forma-se no RTD uma região de acumulação, adjacente a região de dupla barreira, na qual os elétrons no emissor estão sujeitos a uma densidade de estado bidimensional (2D).  De posse do modelo analítico para o cálculo dos níveis de energia em poço quântico e do modelo desenvolvido para descrever a distribuição do perfil de potencial elétrico no RTD, foram desenvolvidos modelos compactos de característica I-V de RTDs 3D-2D e 2D-2D. Desta forma, este trabalho contribui para a modelagem compacta dos RTDs, com vistas ao futuro projeto de circuitos empregando estes dispositivos e considerando os principais fenômenos físicos relevantes na descrição das suas características elétricas e obtendo modelos totalmente analíticos e explícitos. Os modelos desenvolvidos foram validados com dados experimentais e numéricos e fornecendo concordância muito boa.Biblioteca Digitais de Teses e Dissertações da USPRomero, Murilo AraujoCelino, Daniel Ricardo2024-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18155/tde-08102024-155735/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-11T14:05:03Zoai:teses.usp.br:tde-08102024-155735Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-11T14:05:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Compact models of resonant tunneling diodes
Modelos compactos de diodos de tunelamento ressonante
title Compact models of resonant tunneling diodes
spellingShingle Compact models of resonant tunneling diodes
Celino, Daniel Ricardo
compact model
diodo de tunelamento ressonante
modelo compacto
nanoelectronics
nanoeletrônica
poço quântico
quantum well
resonant tunneling diode
RTD 2D-2D
RTD 2D-2D
RTD 3D-2D
RTD 3D-2D
title_short Compact models of resonant tunneling diodes
title_full Compact models of resonant tunneling diodes
title_fullStr Compact models of resonant tunneling diodes
title_full_unstemmed Compact models of resonant tunneling diodes
title_sort Compact models of resonant tunneling diodes
author Celino, Daniel Ricardo
author_facet Celino, Daniel Ricardo
author_role author
dc.contributor.none.fl_str_mv Romero, Murilo Araujo
dc.contributor.author.fl_str_mv Celino, Daniel Ricardo
dc.subject.por.fl_str_mv compact model
diodo de tunelamento ressonante
modelo compacto
nanoelectronics
nanoeletrônica
poço quântico
quantum well
resonant tunneling diode
RTD 2D-2D
RTD 2D-2D
RTD 3D-2D
RTD 3D-2D
topic compact model
diodo de tunelamento ressonante
modelo compacto
nanoelectronics
nanoeletrônica
poço quântico
quantum well
resonant tunneling diode
RTD 2D-2D
RTD 2D-2D
RTD 3D-2D
RTD 3D-2D
description  Due to the growing demand for technologies capable of operating in the Terahertz (THz) frequency range, the Resonant Tunneling Diode (RTD) has attracted renewed interest from the academic community. RTD is a promising candidate for digital and analog applications due to its intrinsic negative differential resistance (NDR) characteristics, high switching speed, and flexible design requirements.  In this framework, this doctoral thesis deals with the compact modeling of the current-voltage (I-V) characteristics of double potential barrier resonant tunneling diodes. For this purpose, it is initially necessary to calculate the energy levels of the eigenstates for the quantum well of finite height present in the semiconductor structures of RTDs. However, determining energy levels for finite quantum wells is only possible through the resolution of transcendental equations using some numerical routine, thereby not allowing an exact analytical solution. Thus, fully analytical approximate solutions were developed to calculate energy levels in rectangular quantum wells of finite height, symmetric and asymmetric, with excellent agreement to exact solutions.  Next, taking the Tsu-Esaki formalism as a starting point to describe carrier transport in the RTD, we consider the general distribution of the electrical potential in the semiconductor device, including the formation of the accumulation and depletion space charge regions, as well as the charge in the quantum well. Furthermore, the scattering experienced by the carriers during the tunneling process through the double potential barrier region was also considered.  The I-V model developed encompasses two distinct cases. The first case describes RTDs, in which, due to the physical, parametric and geometric characteristics of the device, electrons in the emitter have a three-dimensional (3D) density of states. The second case occurs particularly in RTDs employing spacer layers with low doping levels. In this case, the accumulation layer formed in the RTD, adjacent to the double barrier region, is such that the electrons in the emitter have a two-dimensional (2D) density of states.  With the analytical model to calculate energy levels in a quantum well and the model developed to describe the distribution of the electrical potential profile in the RTD, compact I-V characteristic models of RTDs 3D-2D and 2D-2D were proposed. In this way, this work contributes to the compact modeling of RTDs, aiming to help on the design of integrated circuits using these devices and taking into account the main physical phenomena relevant in the description of the electrical characteristics of the RTD, thus obtaining fully analytical and explicit models. The developed models were validated with experimental and numerical data, providing very good agreement.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18155/tde-08102024-155735/
url https://www.teses.usp.br/teses/disponiveis/18/18155/tde-08102024-155735/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256496796073984