Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19042021-173516/ |
Resumo: | Em diversas aplicações de neurociência gostaríamos de entender semelhanças e diferenças entre indiví- duos analisando as conectividades do cérebro. Para isso, propomos duas abordagens: (i) agrupar indivíduos semelhantes ou (ii) posicioná-los em um espectro estratificado de um diagnóstico. Para (i), nós modelamos as redes cerebrais como um grafo e apresentamos dois métodos de clusterização baseados em análise espec- tral: um k-means para grafos do mesmo tamanho e uma abordagem baseada em modelo, chamada gCEM, para grafos de tamanhos diferentes. Para avaliar os pontos fortes e fracos dos métodos, projetamos alguns cenários usando modelos de grafos aleatórios. Também aplicamos a dados reais de compostos químicos e de redes cerebrais funcionais. Para (ii) nós utilizamos uma análise multivariada para encontrar associações cérebro-comportamentais e criar uma estratificação dos indivíduos variando de típicos a atípicos. Aplica- mos um framework de múltiplos holdouts com o método Sparse Partial Least Squares para encontrar essas associações. Utilizamos uma amostra de 349 crianças e adolescentes do conjunto de dados ABIDE II e en- contramos um modo de associação significativo entre dados fMRI e características comportamentais. As variáveis comportamentais mais importantes nesta associação estão relacionadas à capacidade de resposta social e as conexões cerebrais mais importantes estão dentro da rede de modo padrão e entre as redes somatomotora e visual. |
id |
USP_b300206518d9bab4ab1df4c0388c6ba0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19042021-173516 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebraisClustering techniques and stratification of individuals to study functional brain networksAgrupamento de grafosAssociações cérebro-comportamentaisBrain-behaviour associationsDensidade espectralGrafos aleatóriosGraph clusteringRandom graphSpectral densitySPLSSPLSEm diversas aplicações de neurociência gostaríamos de entender semelhanças e diferenças entre indiví- duos analisando as conectividades do cérebro. Para isso, propomos duas abordagens: (i) agrupar indivíduos semelhantes ou (ii) posicioná-los em um espectro estratificado de um diagnóstico. Para (i), nós modelamos as redes cerebrais como um grafo e apresentamos dois métodos de clusterização baseados em análise espec- tral: um k-means para grafos do mesmo tamanho e uma abordagem baseada em modelo, chamada gCEM, para grafos de tamanhos diferentes. Para avaliar os pontos fortes e fracos dos métodos, projetamos alguns cenários usando modelos de grafos aleatórios. Também aplicamos a dados reais de compostos químicos e de redes cerebrais funcionais. Para (ii) nós utilizamos uma análise multivariada para encontrar associações cérebro-comportamentais e criar uma estratificação dos indivíduos variando de típicos a atípicos. Aplica- mos um framework de múltiplos holdouts com o método Sparse Partial Least Squares para encontrar essas associações. Utilizamos uma amostra de 349 crianças e adolescentes do conjunto de dados ABIDE II e en- contramos um modo de associação significativo entre dados fMRI e características comportamentais. As variáveis comportamentais mais importantes nesta associação estão relacionadas à capacidade de resposta social e as conexões cerebrais mais importantes estão dentro da rede de modo padrão e entre as redes somatomotora e visual.In several neuroscience applications, we would like to understand the similarities and the differences between individuals in the same group by analysing their brain connectivity. For this, we propose two approaches: (i) to group similar individuals or (ii) to place them in a stratified spectrum of a diagnosis. For (i), we model the brain networks as a graph and present two clustering methods based on spectral analysis: a k-means for graphs of the same size and a model-based approach, called gCEM, for graphs of different sizes. To assess the strengths and weaknesses of the methods, we designed some scenarios using random graph models. We also apply it to real data on chemical compounds and functional brain networks. For (ii), we use a multivariate analysis to find brain-behavioural associations and create stratification of individuals ranging from typical to atypical. We applied a framework of multiple holdouts with Sparse Partial Least Squares method to find these associations. We used a sample of 349 children and adolescents from the ABIDE II data set and found a significant association between fMRI data and behavioural characteristics. The most important behavioural variables in this association are related to social responsiveness. The most important brain connections are within the default-mode network and between the somatomotor and visual networks.Biblioteca Digitais de Teses e Dissertações da USPFujita, AndréRamos, Taiane Coelho2021-03-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-19042021-173516/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-04-20T19:16:02Zoai:teses.usp.br:tde-19042021-173516Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-04-20T19:16:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais Clustering techniques and stratification of individuals to study functional brain networks |
title |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais |
spellingShingle |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais Ramos, Taiane Coelho Agrupamento de grafos Associações cérebro-comportamentais Brain-behaviour associations Densidade espectral Grafos aleatórios Graph clustering Random graph Spectral density SPLS SPLS |
title_short |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais |
title_full |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais |
title_fullStr |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais |
title_full_unstemmed |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais |
title_sort |
Técnicas de clusterização e estratificação de indivíduos para estudo de redes funcionais cerebrais |
author |
Ramos, Taiane Coelho |
author_facet |
Ramos, Taiane Coelho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fujita, André |
dc.contributor.author.fl_str_mv |
Ramos, Taiane Coelho |
dc.subject.por.fl_str_mv |
Agrupamento de grafos Associações cérebro-comportamentais Brain-behaviour associations Densidade espectral Grafos aleatórios Graph clustering Random graph Spectral density SPLS SPLS |
topic |
Agrupamento de grafos Associações cérebro-comportamentais Brain-behaviour associations Densidade espectral Grafos aleatórios Graph clustering Random graph Spectral density SPLS SPLS |
description |
Em diversas aplicações de neurociência gostaríamos de entender semelhanças e diferenças entre indiví- duos analisando as conectividades do cérebro. Para isso, propomos duas abordagens: (i) agrupar indivíduos semelhantes ou (ii) posicioná-los em um espectro estratificado de um diagnóstico. Para (i), nós modelamos as redes cerebrais como um grafo e apresentamos dois métodos de clusterização baseados em análise espec- tral: um k-means para grafos do mesmo tamanho e uma abordagem baseada em modelo, chamada gCEM, para grafos de tamanhos diferentes. Para avaliar os pontos fortes e fracos dos métodos, projetamos alguns cenários usando modelos de grafos aleatórios. Também aplicamos a dados reais de compostos químicos e de redes cerebrais funcionais. Para (ii) nós utilizamos uma análise multivariada para encontrar associações cérebro-comportamentais e criar uma estratificação dos indivíduos variando de típicos a atípicos. Aplica- mos um framework de múltiplos holdouts com o método Sparse Partial Least Squares para encontrar essas associações. Utilizamos uma amostra de 349 crianças e adolescentes do conjunto de dados ABIDE II e en- contramos um modo de associação significativo entre dados fMRI e características comportamentais. As variáveis comportamentais mais importantes nesta associação estão relacionadas à capacidade de resposta social e as conexões cerebrais mais importantes estão dentro da rede de modo padrão e entre as redes somatomotora e visual. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19042021-173516/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-19042021-173516/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257167078359040 |