Pseudo-rotações irracionais do anel fechado
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-19092008-130329/ |
Resumo: | O conceito de número de rotação originalmente definido para homeomorfismos do círculo S1 que preservam orientação pode ser generalizado para todo homeomorfismo h do anel fechado S1×[0; 1] isotópico à identidade, onde obtemos o chamado conjunto de rotação. Neste trabalho estudamos o caso em que o conjunto de rotação de h se reduz somente a um número irracional ? (neste caso dizemos que h é uma pseudo-rotação irracional), obtendo que para qualquer inteiro positivo n, existe um arco simples ? que une uma componente do bordo do anel à outra, de tal modo que ? é disjunto de seus n primeiros iterados por h: Este resultado é um análogo do Teorema de Kwapisz concernente a difeomorfismos do toro bidimensional [14]. Posteriormente e utilizando o primeiro resultado, provamos que a rotação rígida de ângulo pode ser aproximada por um homeomorfismo conjugado a h. Finalmente, mostramos que ser uma pseudo-rotação irracional é uma propriedade necessária para que um homeomorfismo tenha a propriedade de interseção de curvas e não tenha pontos periódicos. |
id |
USP_b314123d727e82996270f997596e4e5d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19092008-130329 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Pseudo-rotações irracionais do anel fechadoPseudo-rotations of closed annulusanelannulusconjunto de rotaçãoirrational pseudo-rotationisotopic to the identityisotópico à identidadeKwapisz.Kwapisz.número de rotaçãopseudo-rotação irracionalrotation numberrotation setO conceito de número de rotação originalmente definido para homeomorfismos do círculo S1 que preservam orientação pode ser generalizado para todo homeomorfismo h do anel fechado S1×[0; 1] isotópico à identidade, onde obtemos o chamado conjunto de rotação. Neste trabalho estudamos o caso em que o conjunto de rotação de h se reduz somente a um número irracional ? (neste caso dizemos que h é uma pseudo-rotação irracional), obtendo que para qualquer inteiro positivo n, existe um arco simples ? que une uma componente do bordo do anel à outra, de tal modo que ? é disjunto de seus n primeiros iterados por h: Este resultado é um análogo do Teorema de Kwapisz concernente a difeomorfismos do toro bidimensional [14]. Posteriormente e utilizando o primeiro resultado, provamos que a rotação rígida de ângulo pode ser aproximada por um homeomorfismo conjugado a h. Finalmente, mostramos que ser uma pseudo-rotação irracional é uma propriedade necessária para que um homeomorfismo tenha a propriedade de interseção de curvas e não tenha pontos periódicos.The concept of rotation number originally defined for orientation preserving homeomorphisms of the circle S1 can be generalized for any homeomorphism h of closed annulus S1×[0; 1] which is isotopic to the identity. In this setting we obtain the so called rotation set. In this work we study the case when the rotation set of h is reduced to a single irrational number ? (we say that h is an irrational pseudo-rotation), and we prove that for any positive integer n, there exists a simple arc ? joining one of the boundary components of annulus to the other, such that ? is disjoint from its n first iterates under h: This result is an analogue of a theorem of Kwapisz dealing with diffeomorphisms of the two-torus [14]. Subsequently and applying the first result, we prove that a rigid rotation of angle can be approximated by a homeomorphism that is conjugate to h: Finally, we prove that to be an irrational pseudo-rotation is a necessary property in order that a homeomorphism has the curves intersection property and no periodic points.Biblioteca Digitais de Teses e Dissertações da USPZanata, Salvador AddasTipán Salazar, Francisco Javier 2008-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-19092008-130329/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-19092008-130329Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Pseudo-rotações irracionais do anel fechado Pseudo-rotations of closed annulus |
title |
Pseudo-rotações irracionais do anel fechado |
spellingShingle |
Pseudo-rotações irracionais do anel fechado Tipán Salazar, Francisco Javier anel annulus conjunto de rotação irrational pseudo-rotation isotopic to the identity isotópico à identidade Kwapisz. Kwapisz. número de rotação pseudo-rotação irracional rotation number rotation set |
title_short |
Pseudo-rotações irracionais do anel fechado |
title_full |
Pseudo-rotações irracionais do anel fechado |
title_fullStr |
Pseudo-rotações irracionais do anel fechado |
title_full_unstemmed |
Pseudo-rotações irracionais do anel fechado |
title_sort |
Pseudo-rotações irracionais do anel fechado |
author |
Tipán Salazar, Francisco Javier |
author_facet |
Tipán Salazar, Francisco Javier |
author_role |
author |
dc.contributor.none.fl_str_mv |
Zanata, Salvador Addas |
dc.contributor.author.fl_str_mv |
Tipán Salazar, Francisco Javier |
dc.subject.por.fl_str_mv |
anel annulus conjunto de rotação irrational pseudo-rotation isotopic to the identity isotópico à identidade Kwapisz. Kwapisz. número de rotação pseudo-rotação irracional rotation number rotation set |
topic |
anel annulus conjunto de rotação irrational pseudo-rotation isotopic to the identity isotópico à identidade Kwapisz. Kwapisz. número de rotação pseudo-rotação irracional rotation number rotation set |
description |
O conceito de número de rotação originalmente definido para homeomorfismos do círculo S1 que preservam orientação pode ser generalizado para todo homeomorfismo h do anel fechado S1×[0; 1] isotópico à identidade, onde obtemos o chamado conjunto de rotação. Neste trabalho estudamos o caso em que o conjunto de rotação de h se reduz somente a um número irracional ? (neste caso dizemos que h é uma pseudo-rotação irracional), obtendo que para qualquer inteiro positivo n, existe um arco simples ? que une uma componente do bordo do anel à outra, de tal modo que ? é disjunto de seus n primeiros iterados por h: Este resultado é um análogo do Teorema de Kwapisz concernente a difeomorfismos do toro bidimensional [14]. Posteriormente e utilizando o primeiro resultado, provamos que a rotação rígida de ângulo pode ser aproximada por um homeomorfismo conjugado a h. Finalmente, mostramos que ser uma pseudo-rotação irracional é uma propriedade necessária para que um homeomorfismo tenha a propriedade de interseção de curvas e não tenha pontos periódicos. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-19092008-130329/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-19092008-130329/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257130811260928 |