Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse

Detalhes bibliográficos
Autor(a) principal: Calegari, Rubens Perez
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/64/64134/tde-20052022-122741/
Resumo: Microbial contamination present in the ethanol fermentation process negatively affects ethanol efficiency and productivity. Currently, to control bacterial contamination, the sucroernegetic industries carry out the acidic treatment of yeast, however, this causes damage to the fermentation, as it promotes stress to the yeast, allows the presence of bacteria and the replacement of the selected yeast during fermentation. Besides, acid treatment is responsible for high levels of sulfate in vinasse, which, when digested, generates H2S, a toxic compound which interferes negatively in the methanogenesis process. For these reasons, the present work proposes the production of ethanol from wort sterilized by electron beam as a substitute for the acid treatment, and anaerobic digestion of the vinasse from the process. The present study was conducted in three stages. First, tests of wort sterilization by electron beam were performed. Second, the fermentation of the irradiated worts was carried out. Third, the anaerobic digestion (AD) of vinasse and the anaerobic co-digestion (AC) of vinasse with filter cake and sugarcane straw were evaluated. Contingencies did not allow the generation of sufficient vinasse for conducting the third stage; therefore, it was decided to use sulfate-rich vinasse from the industry, and to test its AD and AC with the addition of the trace elements (TE) Fe, Ni, Co, Se, Mo, and Zn, in order to circumvent the problems caused by the high sulfate concentration. In the first stage, only the radiation dose of 80 kGy was able to sterilize the wort, however, 40 kGy was sufficient to inactivate >99.99% of the contaminating microorganisms. In addition, there was no sugar inversion and no formation of the inhibitory compounds flavonoid, furfural, and 5-HMF. In the fermentation of the irradiated worts the dose of 20 kGy promoted the highest ethanol yield among the tested worts (0, 10, 20, and 40 kGy), showing the possibility of using electron beam for the treatment of wort, which allows decrease in losses caused by microbial contamination, in addition, allows increase in fermentation yield and productivity. In the AD and AC experiments, iron played an important role in decreasing the H2S production. In addition, the other metals made it possible to increase the methane yield. The vinasse AD and TE reactor (R2) reached a yield between 222.29-411.39 NmlCH4 g-1 VS, and the H2S in biogas remained below 500 ppm. The control reactor that did not received TE (R1) reached 36,000 ppm of H2S and failed due to acidification. However, after pH correction and TE addition, it was possible to re-establish AD in R1. In the AC reactors R3 and R4 after the addition of all TE, a yield between 54.61-109.14 NmlCH4 g-1 VS was observed in R3, and between 54.15-110.21 NmlCH4 g-1 VS in R4. Moreover, the H2S concentration remained below 186.42 ppm in R3 and below 70.74 in R4. In general, anaerobic co-digestion with the addition of metals maintained greater stability over the 238 days of experiment, with low accumulation of volatile fatty acids and H2S.
id USP_b34c38fd1dafe31c91cb57a7cfe0f69c
oai_identifier_str oai:teses.usp.br:tde-20052022-122741
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasseProdução de etanol a partir da fermentação de mosto esterilizado com feixe de elétrons seguida da produção de metano com o uso da vinhaça geradaAcelerador de elétronsAlcoholic fermentationAnaerobic co-digestionBiocombustívelBiofuelBiogasBiogásCana-de-açúcarCodigestão anaeróbiaElectron acceleratorFermentação alcoólicaSugarcaneMicrobial contamination present in the ethanol fermentation process negatively affects ethanol efficiency and productivity. Currently, to control bacterial contamination, the sucroernegetic industries carry out the acidic treatment of yeast, however, this causes damage to the fermentation, as it promotes stress to the yeast, allows the presence of bacteria and the replacement of the selected yeast during fermentation. Besides, acid treatment is responsible for high levels of sulfate in vinasse, which, when digested, generates H2S, a toxic compound which interferes negatively in the methanogenesis process. For these reasons, the present work proposes the production of ethanol from wort sterilized by electron beam as a substitute for the acid treatment, and anaerobic digestion of the vinasse from the process. The present study was conducted in three stages. First, tests of wort sterilization by electron beam were performed. Second, the fermentation of the irradiated worts was carried out. Third, the anaerobic digestion (AD) of vinasse and the anaerobic co-digestion (AC) of vinasse with filter cake and sugarcane straw were evaluated. Contingencies did not allow the generation of sufficient vinasse for conducting the third stage; therefore, it was decided to use sulfate-rich vinasse from the industry, and to test its AD and AC with the addition of the trace elements (TE) Fe, Ni, Co, Se, Mo, and Zn, in order to circumvent the problems caused by the high sulfate concentration. In the first stage, only the radiation dose of 80 kGy was able to sterilize the wort, however, 40 kGy was sufficient to inactivate >99.99% of the contaminating microorganisms. In addition, there was no sugar inversion and no formation of the inhibitory compounds flavonoid, furfural, and 5-HMF. In the fermentation of the irradiated worts the dose of 20 kGy promoted the highest ethanol yield among the tested worts (0, 10, 20, and 40 kGy), showing the possibility of using electron beam for the treatment of wort, which allows decrease in losses caused by microbial contamination, in addition, allows increase in fermentation yield and productivity. In the AD and AC experiments, iron played an important role in decreasing the H2S production. In addition, the other metals made it possible to increase the methane yield. The vinasse AD and TE reactor (R2) reached a yield between 222.29-411.39 NmlCH4 g-1 VS, and the H2S in biogas remained below 500 ppm. The control reactor that did not received TE (R1) reached 36,000 ppm of H2S and failed due to acidification. However, after pH correction and TE addition, it was possible to re-establish AD in R1. In the AC reactors R3 and R4 after the addition of all TE, a yield between 54.61-109.14 NmlCH4 g-1 VS was observed in R3, and between 54.15-110.21 NmlCH4 g-1 VS in R4. Moreover, the H2S concentration remained below 186.42 ppm in R3 and below 70.74 in R4. In general, anaerobic co-digestion with the addition of metals maintained greater stability over the 238 days of experiment, with low accumulation of volatile fatty acids and H2S.A contaminação microbiana presente no processo de fermentação alcoólica afeta negativamente a eficiência e a produtividade de etanol. Atualmente, para controlar a contaminação bacteriana, as indústrias sucroenergéticas realizam o tratamento ácido do fermento, porém, este causa prejuízos para a fermentação, pois causa estresse ao fermento, permite a presença de bactérias e a substituição da levedura selecionada durante a fermentação. Além disso, o tratamento ácido é responsável por altos teores de sulfato na vinhaça, que ao ser digerida, gera H2S, composto tóxico e que interfere negativamente no processo de metanogênese. Por esses motivos, o presente trabalho propõe a produção de etanol a partir de mosto esterilizado por feixe de elétrons em substituição ao tratamento ácido e a biodigestão anaeróbia da vinhaça proveniente do processo. O presente estudo foi conduzido em três etapas, na primeira foram realizados testes de esterilização com feixe de elétrons, na segunda a fermentação de mosto irradiado e na terceira etapa foi avaliada a digestão anaeróbia (DA) de vinhaça e a codigestão anaeróbia (CA) de vinhaça com torta de filtro e palha de cana-de-açúcar. Imprevistos não permitiram a geração de volume de vinhaça suficiente para a condução da terceira etapa, portanto, optou-se por utilizar vinhaça rica em sulfato proveniente da indústria, e testar sua DA e CA com adição dos elementos traço (ET) Fe, Ni, Co, Se, Mo e Zn, com objetivo de contornar os problemas causados pela alta concentração de sulfato. Na primeira fase apenas a dose de radiação de 80kGy foi capaz de esterilizar o mosto, no entanto, 40 kGy foi suficiente para inativar >99.99% dos micro-organismos contaminantes. Além disso, não houve inversão de açúcares nem formação dos compostos inibitórios flavonoides, furfural e 5-HMF. Na fermentação do mosto irradiado, a dose de 20 kGy promoveu o maior rendimento alcóolico entre os mostos testados (0,10, 20 e 40 kGy), evidenciando a possibilidade do uso do feixe de elétrons para o tratamento do mosto, o que possibilita redução nas perdas causadas pela contaminação microbiana, além de permitir aumento no rendimento e produtividade fermentativa. Nos ensaios de DA e CA o ferro desempenhou um papel importante na diminuição da produção de H2S, ademais, os outros metais possibilitaram aumentar o rendimento de metano. O reator de DA de vinhaça e ET (R2) atingiu rendimento entre 222,29-411,39 NmLCH4g-1VS, e o H2S no biogás permaneceu abaixo de 500 ppm. Já o reator controle que não recebeu ET (R1) chegou a 36,000ppm de H2S e apresentou falha devido acidificação. No entanto, após a correção do pH e adição de ET foi possível restabelecer a DA em R1. Nos reatores de CA R3 e R4 após a adição de todos os ET observou-se rendimentos entre 54,61-109,14 NmLCH4g-1VS em R3 e entre 54,15-110,21 NmLCH4g-1VS em R4. Além disso, a concentração de H2S manteve-se abaixo de 186,42 ppm em R3 e abaixo de 70,74 em R4. De forma geral, a codigestão anaeróbia com adição dos metais manteve maior estabilidade ao longo dos 238 dias de ensaio, com baixo acúmulo de ácidos graxos voláteis e H2S.Biblioteca Digitais de Teses e Dissertações da USPArthur, ValterBaptista, Antonio SampaioCalegari, Rubens Perez2021-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/64/64134/tde-20052022-122741/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-05-30T14:56:24Zoai:teses.usp.br:tde-20052022-122741Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-30T14:56:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
Produção de etanol a partir da fermentação de mosto esterilizado com feixe de elétrons seguida da produção de metano com o uso da vinhaça gerada
title Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
spellingShingle Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
Calegari, Rubens Perez
Acelerador de elétrons
Alcoholic fermentation
Anaerobic co-digestion
Biocombustível
Biofuel
Biogas
Biogás
Cana-de-açúcar
Codigestão anaeróbia
Electron accelerator
Fermentação alcoólica
Sugarcane
title_short Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
title_full Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
title_fullStr Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
title_full_unstemmed Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
title_sort Ethanol production from the fermentation of sterilized wort by electron beam followed by methane production from its vinasse
author Calegari, Rubens Perez
author_facet Calegari, Rubens Perez
author_role author
dc.contributor.none.fl_str_mv Arthur, Valter
Baptista, Antonio Sampaio
dc.contributor.author.fl_str_mv Calegari, Rubens Perez
dc.subject.por.fl_str_mv Acelerador de elétrons
Alcoholic fermentation
Anaerobic co-digestion
Biocombustível
Biofuel
Biogas
Biogás
Cana-de-açúcar
Codigestão anaeróbia
Electron accelerator
Fermentação alcoólica
Sugarcane
topic Acelerador de elétrons
Alcoholic fermentation
Anaerobic co-digestion
Biocombustível
Biofuel
Biogas
Biogás
Cana-de-açúcar
Codigestão anaeróbia
Electron accelerator
Fermentação alcoólica
Sugarcane
description Microbial contamination present in the ethanol fermentation process negatively affects ethanol efficiency and productivity. Currently, to control bacterial contamination, the sucroernegetic industries carry out the acidic treatment of yeast, however, this causes damage to the fermentation, as it promotes stress to the yeast, allows the presence of bacteria and the replacement of the selected yeast during fermentation. Besides, acid treatment is responsible for high levels of sulfate in vinasse, which, when digested, generates H2S, a toxic compound which interferes negatively in the methanogenesis process. For these reasons, the present work proposes the production of ethanol from wort sterilized by electron beam as a substitute for the acid treatment, and anaerobic digestion of the vinasse from the process. The present study was conducted in three stages. First, tests of wort sterilization by electron beam were performed. Second, the fermentation of the irradiated worts was carried out. Third, the anaerobic digestion (AD) of vinasse and the anaerobic co-digestion (AC) of vinasse with filter cake and sugarcane straw were evaluated. Contingencies did not allow the generation of sufficient vinasse for conducting the third stage; therefore, it was decided to use sulfate-rich vinasse from the industry, and to test its AD and AC with the addition of the trace elements (TE) Fe, Ni, Co, Se, Mo, and Zn, in order to circumvent the problems caused by the high sulfate concentration. In the first stage, only the radiation dose of 80 kGy was able to sterilize the wort, however, 40 kGy was sufficient to inactivate >99.99% of the contaminating microorganisms. In addition, there was no sugar inversion and no formation of the inhibitory compounds flavonoid, furfural, and 5-HMF. In the fermentation of the irradiated worts the dose of 20 kGy promoted the highest ethanol yield among the tested worts (0, 10, 20, and 40 kGy), showing the possibility of using electron beam for the treatment of wort, which allows decrease in losses caused by microbial contamination, in addition, allows increase in fermentation yield and productivity. In the AD and AC experiments, iron played an important role in decreasing the H2S production. In addition, the other metals made it possible to increase the methane yield. The vinasse AD and TE reactor (R2) reached a yield between 222.29-411.39 NmlCH4 g-1 VS, and the H2S in biogas remained below 500 ppm. The control reactor that did not received TE (R1) reached 36,000 ppm of H2S and failed due to acidification. However, after pH correction and TE addition, it was possible to re-establish AD in R1. In the AC reactors R3 and R4 after the addition of all TE, a yield between 54.61-109.14 NmlCH4 g-1 VS was observed in R3, and between 54.15-110.21 NmlCH4 g-1 VS in R4. Moreover, the H2S concentration remained below 186.42 ppm in R3 and below 70.74 in R4. In general, anaerobic co-digestion with the addition of metals maintained greater stability over the 238 days of experiment, with low accumulation of volatile fatty acids and H2S.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/64/64134/tde-20052022-122741/
url https://www.teses.usp.br/teses/disponiveis/64/64134/tde-20052022-122741/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257157042438144