Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.

Detalhes bibliográficos
Autor(a) principal: Wagner, Marcel Stefan
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-07022017-111104/
Resumo: Esta Tese estuda a implementação de um novo mecanismo de análise e atuação em Redes de Sensores Sem Fio (RSSF) com múltiplos saltos baseado em características de cognição aplicadas aos nós que compõem a rede. Para tanto, é proposto um algoritmo de detecção de variabilidade dos nós sensores, envolvendo movimentação do nó, alcance do sinal da antena do sensor, quantidade de nós que fazem parte da rede e o número de conexões possíveis com nós vizinhos. Além do algoritmo de detecção de variabilidade, propõe-se um sistema multilayer denominado Adaptive Cognitive System (ACS) com base na arquitetura de Cognitive Networks (CN), que abrange: coleta, tratamento e tomada de decisão. O tratamento se refere à parte cognitiva do sistema, contemplando a criação do Cognitive Processor Module (CPMod), que por sua vez, abrange a semântica da rede, aplicação de Lógica Fuzzy e interação com um simulador de Wireless Sensor Networks (WSN) e a tomada de decisão é realizada pelo CPMod com base no resultado de análises executadas em rounds e histórico da rede com o uso de funções de pertinência de fuzzificação e defuzzificação, regras Fuzzy e inferência sobre informações coletadas da rede. Observou-se com os testes realizados na rede, utilizando-se o algoritmo de detecção, que a variabilidade dos nós sensores afeta diretamente o desempenho da rede, devido à necessidade de reestabelecimento de links e rotas entre os nós. Através de testes realizados via software na WSN, identificou-se que com o uso do ACS houve melhora significativa no desempenho em relação ao atraso fim-a-fim, latência, quantidade de pacotes descartados e de energia consumida pelos nós na rede. O ACS demonstrou potencial para a solução de problemas relacionados com as métricas destacadas, realizando ajustes em múltiplas camadas de rede do padrão IEEE 802.15.4 para até 200 nós na rede.
id USP_b3ee069e0c1b968d1d1638a2e2cc570d
oai_identifier_str oai:teses.usp.br:tde-07022017-111104
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.Cognitive system with decision making based on Fuzzy Logic applied to multi-hop wireless sensor networks.Adaptive systemCogniçãoCognitionCognitive networksControle adaptativoFuzzy LogicLógica FuzzyRedes cognitivasWirelessWirelessEsta Tese estuda a implementação de um novo mecanismo de análise e atuação em Redes de Sensores Sem Fio (RSSF) com múltiplos saltos baseado em características de cognição aplicadas aos nós que compõem a rede. Para tanto, é proposto um algoritmo de detecção de variabilidade dos nós sensores, envolvendo movimentação do nó, alcance do sinal da antena do sensor, quantidade de nós que fazem parte da rede e o número de conexões possíveis com nós vizinhos. Além do algoritmo de detecção de variabilidade, propõe-se um sistema multilayer denominado Adaptive Cognitive System (ACS) com base na arquitetura de Cognitive Networks (CN), que abrange: coleta, tratamento e tomada de decisão. O tratamento se refere à parte cognitiva do sistema, contemplando a criação do Cognitive Processor Module (CPMod), que por sua vez, abrange a semântica da rede, aplicação de Lógica Fuzzy e interação com um simulador de Wireless Sensor Networks (WSN) e a tomada de decisão é realizada pelo CPMod com base no resultado de análises executadas em rounds e histórico da rede com o uso de funções de pertinência de fuzzificação e defuzzificação, regras Fuzzy e inferência sobre informações coletadas da rede. Observou-se com os testes realizados na rede, utilizando-se o algoritmo de detecção, que a variabilidade dos nós sensores afeta diretamente o desempenho da rede, devido à necessidade de reestabelecimento de links e rotas entre os nós. Através de testes realizados via software na WSN, identificou-se que com o uso do ACS houve melhora significativa no desempenho em relação ao atraso fim-a-fim, latência, quantidade de pacotes descartados e de energia consumida pelos nós na rede. O ACS demonstrou potencial para a solução de problemas relacionados com as métricas destacadas, realizando ajustes em múltiplas camadas de rede do padrão IEEE 802.15.4 para até 200 nós na rede.This Dissertation examines the implementation of a mechanism to analyze and act on multi-hop Wireless Sensor Networks (WSN) with the use of cognitive features applied to the network nodes. For this purpose, a variation detection algorithm was proposed for monitoring sensor nodes, involving the node\'s mobility features, signal range of the sensor antenna, the number of nodes in the network and the number of possible connections to neighboring nodes. In addition to the detection algorithm, a multi-layer system is proposed, named Adaptive Cognitive System (ACS). It is based on Cognitive Networks (CN) architecture, including data gathering, information treatment and decision making. The main part of the system is the Cognitive Processor Module (CPMod), which extracts the information about the WSN. In turn the Fuzzy Logic block works in tandem with the semantic engine to feed the codes to CPMod in the decision making process. The codes are the result of analysis performed on rounds using fuzzification and defuzzification membership functions, fuzzy rules and inference over information collected from the network. It was observed in tests performed in the WSN, using the detection algorithm, that the variability in sensor nodes directly affects the network performance due to the effort spent in rerounting links and paths. Through WSN testing performed via software, it was found that using the ACS implies in significant improvement in performance over the end-to-end delay, network latency, dropped packets and amount of energy consumed by nodes on the network. The ACS potential is proven for solving problems related to the previously mentioned metrics, performing adjustments on multiple network layers standardized by IEEE 802.15.4 up to 200 nodes in the network.Biblioteca Digitais de Teses e Dissertações da USPRamirez, Miguel ArjonaWagner, Marcel Stefan2016-04-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-07022017-111104/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-07022017-111104Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
Cognitive system with decision making based on Fuzzy Logic applied to multi-hop wireless sensor networks.
title Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
spellingShingle Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
Wagner, Marcel Stefan
Adaptive system
Cognição
Cognition
Cognitive networks
Controle adaptativo
Fuzzy Logic
Lógica Fuzzy
Redes cognitivas
Wireless
Wireless
title_short Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
title_full Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
title_fullStr Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
title_full_unstemmed Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
title_sort Sistema cognitivo com tomada de decisão baseada em Lógica Fuzzy para aplicação em ambientes de redes de sensores sem fio com múltiplos saltos.
author Wagner, Marcel Stefan
author_facet Wagner, Marcel Stefan
author_role author
dc.contributor.none.fl_str_mv Ramirez, Miguel Arjona
dc.contributor.author.fl_str_mv Wagner, Marcel Stefan
dc.subject.por.fl_str_mv Adaptive system
Cognição
Cognition
Cognitive networks
Controle adaptativo
Fuzzy Logic
Lógica Fuzzy
Redes cognitivas
Wireless
Wireless
topic Adaptive system
Cognição
Cognition
Cognitive networks
Controle adaptativo
Fuzzy Logic
Lógica Fuzzy
Redes cognitivas
Wireless
Wireless
description Esta Tese estuda a implementação de um novo mecanismo de análise e atuação em Redes de Sensores Sem Fio (RSSF) com múltiplos saltos baseado em características de cognição aplicadas aos nós que compõem a rede. Para tanto, é proposto um algoritmo de detecção de variabilidade dos nós sensores, envolvendo movimentação do nó, alcance do sinal da antena do sensor, quantidade de nós que fazem parte da rede e o número de conexões possíveis com nós vizinhos. Além do algoritmo de detecção de variabilidade, propõe-se um sistema multilayer denominado Adaptive Cognitive System (ACS) com base na arquitetura de Cognitive Networks (CN), que abrange: coleta, tratamento e tomada de decisão. O tratamento se refere à parte cognitiva do sistema, contemplando a criação do Cognitive Processor Module (CPMod), que por sua vez, abrange a semântica da rede, aplicação de Lógica Fuzzy e interação com um simulador de Wireless Sensor Networks (WSN) e a tomada de decisão é realizada pelo CPMod com base no resultado de análises executadas em rounds e histórico da rede com o uso de funções de pertinência de fuzzificação e defuzzificação, regras Fuzzy e inferência sobre informações coletadas da rede. Observou-se com os testes realizados na rede, utilizando-se o algoritmo de detecção, que a variabilidade dos nós sensores afeta diretamente o desempenho da rede, devido à necessidade de reestabelecimento de links e rotas entre os nós. Através de testes realizados via software na WSN, identificou-se que com o uso do ACS houve melhora significativa no desempenho em relação ao atraso fim-a-fim, latência, quantidade de pacotes descartados e de energia consumida pelos nós na rede. O ACS demonstrou potencial para a solução de problemas relacionados com as métricas destacadas, realizando ajustes em múltiplas camadas de rede do padrão IEEE 802.15.4 para até 200 nós na rede.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-07022017-111104/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-07022017-111104/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256763609382912