Prediction of football match outcomes from passing network structure
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/ |
Resumo: | The majority of methods for predicting match outcomes in football have been developed using generic historical data, such as shots on goal, number of fouls and number of cards, with little regard to the organisation of the teams. With the recent evolution of tracking technology, the collection of precise event data for a match has been made possible, allowing for the construction of passing networks detailing the interaction between players. In this work, we develop a method to predict outcomes of matches from the passing network structure of the teams. For this end, we build the passing networks from event data and train different machine learning algorithms to predict match outcomes from the metrics of such networks. We then rank those metrics based on their impact on the predictive model output. Our method achieves a mean accuracy of 58.5%, compared to a baseline accuracy of 44.8%, on a data set containing 1941 matches from five of the most influential leagues in Europe, the 2018 World Cup and the 2016 Euro Cup. The most important metrics for successful teams are the largest eigenvalue of the adjacency matrix, degree distribution statistics and the average shortest path length. |
id |
USP_b50b8b0f67517952309977b6c67b80f3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-28082024-162138 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Prediction of football match outcomes from passing network structurePrevisão de resultados de jogos de futebol a partir da estrutura de redes de passeAprendizado de máquinaCiência das redesComplex networksFootballFutebolMachine learningNetwork sciencePassing networksRedes complexasRedes de passeSoccerThe majority of methods for predicting match outcomes in football have been developed using generic historical data, such as shots on goal, number of fouls and number of cards, with little regard to the organisation of the teams. With the recent evolution of tracking technology, the collection of precise event data for a match has been made possible, allowing for the construction of passing networks detailing the interaction between players. In this work, we develop a method to predict outcomes of matches from the passing network structure of the teams. For this end, we build the passing networks from event data and train different machine learning algorithms to predict match outcomes from the metrics of such networks. We then rank those metrics based on their impact on the predictive model output. Our method achieves a mean accuracy of 58.5%, compared to a baseline accuracy of 44.8%, on a data set containing 1941 matches from five of the most influential leagues in Europe, the 2018 World Cup and the 2016 Euro Cup. The most important metrics for successful teams are the largest eigenvalue of the adjacency matrix, degree distribution statistics and the average shortest path length.A maioria das técnicas de previsão de resultados de jogos de futebol têm sido elaboradas usando dados históricos genéricos como chutes ao gol, número de faltas e número de cartões, sem considerar a organização dos times. Com a recente evolução das tecnologias de monitoramento de jogadores, a captura de dados precisos de eventos para um jogo agora é possível, permitindo a construção de redes de passe que detalham a interação entre jogadores. Nessa dissertação, desenvolvemos um método para prever resultados de jogos de futebol a partir da estrutura destas redes de passe. Para esse propósito, construímos as redes de passe a partir dos dados de evento e treinamos diferentes algoritmos de aprendizado de máquina para prever resultados dos jogos a partir das métricas dessas redes. Classificamos então essas métricas de acordo com suas importâncias para a saída dos modelos de previsão. Este método consegue prever resultados de jogos com 58.5% de acurácia, comparado aos 44.8% de um classificador de referência, em uma base de dados que contém 1941 jogos de cinco das mais importantes primeiras divisões da Europa, da Copa do Mundo de 2018 e da Euro Copa de 2016. As métricas mais importantes para times bem sucedidos são o maior autovalor da matriz de adjacência, as estatísticas da distribuição de graus e o tamanho médio dos caminhos mínimos.Biblioteca Digitais de Teses e Dissertações da USPPeron, Thomas Kauê Dal'MasoXavier, Felipe Jordão2024-06-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-28T19:36:02Zoai:teses.usp.br:tde-28082024-162138Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-28T19:36:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Prediction of football match outcomes from passing network structure Previsão de resultados de jogos de futebol a partir da estrutura de redes de passe |
title |
Prediction of football match outcomes from passing network structure |
spellingShingle |
Prediction of football match outcomes from passing network structure Xavier, Felipe Jordão Aprendizado de máquina Ciência das redes Complex networks Football Futebol Machine learning Network science Passing networks Redes complexas Redes de passe Soccer |
title_short |
Prediction of football match outcomes from passing network structure |
title_full |
Prediction of football match outcomes from passing network structure |
title_fullStr |
Prediction of football match outcomes from passing network structure |
title_full_unstemmed |
Prediction of football match outcomes from passing network structure |
title_sort |
Prediction of football match outcomes from passing network structure |
author |
Xavier, Felipe Jordão |
author_facet |
Xavier, Felipe Jordão |
author_role |
author |
dc.contributor.none.fl_str_mv |
Peron, Thomas Kauê Dal'Maso |
dc.contributor.author.fl_str_mv |
Xavier, Felipe Jordão |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Ciência das redes Complex networks Football Futebol Machine learning Network science Passing networks Redes complexas Redes de passe Soccer |
topic |
Aprendizado de máquina Ciência das redes Complex networks Football Futebol Machine learning Network science Passing networks Redes complexas Redes de passe Soccer |
description |
The majority of methods for predicting match outcomes in football have been developed using generic historical data, such as shots on goal, number of fouls and number of cards, with little regard to the organisation of the teams. With the recent evolution of tracking technology, the collection of precise event data for a match has been made possible, allowing for the construction of passing networks detailing the interaction between players. In this work, we develop a method to predict outcomes of matches from the passing network structure of the teams. For this end, we build the passing networks from event data and train different machine learning algorithms to predict match outcomes from the metrics of such networks. We then rank those metrics based on their impact on the predictive model output. Our method achieves a mean accuracy of 58.5%, compared to a baseline accuracy of 44.8%, on a data set containing 1941 matches from five of the most influential leagues in Europe, the 2018 World Cup and the 2016 Euro Cup. The most important metrics for successful teams are the largest eigenvalue of the adjacency matrix, degree distribution statistics and the average shortest path length. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257440610942976 |