Prediction of football match outcomes from passing network structure

Detalhes bibliográficos
Autor(a) principal: Xavier, Felipe Jordão
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/
Resumo: The majority of methods for predicting match outcomes in football have been developed using generic historical data, such as shots on goal, number of fouls and number of cards, with little regard to the organisation of the teams. With the recent evolution of tracking technology, the collection of precise event data for a match has been made possible, allowing for the construction of passing networks detailing the interaction between players. In this work, we develop a method to predict outcomes of matches from the passing network structure of the teams. For this end, we build the passing networks from event data and train different machine learning algorithms to predict match outcomes from the metrics of such networks. We then rank those metrics based on their impact on the predictive model output. Our method achieves a mean accuracy of 58.5%, compared to a baseline accuracy of 44.8%, on a data set containing 1941 matches from five of the most influential leagues in Europe, the 2018 World Cup and the 2016 Euro Cup. The most important metrics for successful teams are the largest eigenvalue of the adjacency matrix, degree distribution statistics and the average shortest path length.
id USP_b50b8b0f67517952309977b6c67b80f3
oai_identifier_str oai:teses.usp.br:tde-28082024-162138
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Prediction of football match outcomes from passing network structurePrevisão de resultados de jogos de futebol a partir da estrutura de redes de passeAprendizado de máquinaCiência das redesComplex networksFootballFutebolMachine learningNetwork sciencePassing networksRedes complexasRedes de passeSoccerThe majority of methods for predicting match outcomes in football have been developed using generic historical data, such as shots on goal, number of fouls and number of cards, with little regard to the organisation of the teams. With the recent evolution of tracking technology, the collection of precise event data for a match has been made possible, allowing for the construction of passing networks detailing the interaction between players. In this work, we develop a method to predict outcomes of matches from the passing network structure of the teams. For this end, we build the passing networks from event data and train different machine learning algorithms to predict match outcomes from the metrics of such networks. We then rank those metrics based on their impact on the predictive model output. Our method achieves a mean accuracy of 58.5%, compared to a baseline accuracy of 44.8%, on a data set containing 1941 matches from five of the most influential leagues in Europe, the 2018 World Cup and the 2016 Euro Cup. The most important metrics for successful teams are the largest eigenvalue of the adjacency matrix, degree distribution statistics and the average shortest path length.A maioria das técnicas de previsão de resultados de jogos de futebol têm sido elaboradas usando dados históricos genéricos como chutes ao gol, número de faltas e número de cartões, sem considerar a organização dos times. Com a recente evolução das tecnologias de monitoramento de jogadores, a captura de dados precisos de eventos para um jogo agora é possível, permitindo a construção de redes de passe que detalham a interação entre jogadores. Nessa dissertação, desenvolvemos um método para prever resultados de jogos de futebol a partir da estrutura destas redes de passe. Para esse propósito, construímos as redes de passe a partir dos dados de evento e treinamos diferentes algoritmos de aprendizado de máquina para prever resultados dos jogos a partir das métricas dessas redes. Classificamos então essas métricas de acordo com suas importâncias para a saída dos modelos de previsão. Este método consegue prever resultados de jogos com 58.5% de acurácia, comparado aos 44.8% de um classificador de referência, em uma base de dados que contém 1941 jogos de cinco das mais importantes primeiras divisões da Europa, da Copa do Mundo de 2018 e da Euro Copa de 2016. As métricas mais importantes para times bem sucedidos são o maior autovalor da matriz de adjacência, as estatísticas da distribuição de graus e o tamanho médio dos caminhos mínimos.Biblioteca Digitais de Teses e Dissertações da USPPeron, Thomas Kauê Dal'MasoXavier, Felipe Jordão2024-06-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-28T19:36:02Zoai:teses.usp.br:tde-28082024-162138Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-28T19:36:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Prediction of football match outcomes from passing network structure
Previsão de resultados de jogos de futebol a partir da estrutura de redes de passe
title Prediction of football match outcomes from passing network structure
spellingShingle Prediction of football match outcomes from passing network structure
Xavier, Felipe Jordão
Aprendizado de máquina
Ciência das redes
Complex networks
Football
Futebol
Machine learning
Network science
Passing networks
Redes complexas
Redes de passe
Soccer
title_short Prediction of football match outcomes from passing network structure
title_full Prediction of football match outcomes from passing network structure
title_fullStr Prediction of football match outcomes from passing network structure
title_full_unstemmed Prediction of football match outcomes from passing network structure
title_sort Prediction of football match outcomes from passing network structure
author Xavier, Felipe Jordão
author_facet Xavier, Felipe Jordão
author_role author
dc.contributor.none.fl_str_mv Peron, Thomas Kauê Dal'Maso
dc.contributor.author.fl_str_mv Xavier, Felipe Jordão
dc.subject.por.fl_str_mv Aprendizado de máquina
Ciência das redes
Complex networks
Football
Futebol
Machine learning
Network science
Passing networks
Redes complexas
Redes de passe
Soccer
topic Aprendizado de máquina
Ciência das redes
Complex networks
Football
Futebol
Machine learning
Network science
Passing networks
Redes complexas
Redes de passe
Soccer
description The majority of methods for predicting match outcomes in football have been developed using generic historical data, such as shots on goal, number of fouls and number of cards, with little regard to the organisation of the teams. With the recent evolution of tracking technology, the collection of precise event data for a match has been made possible, allowing for the construction of passing networks detailing the interaction between players. In this work, we develop a method to predict outcomes of matches from the passing network structure of the teams. For this end, we build the passing networks from event data and train different machine learning algorithms to predict match outcomes from the metrics of such networks. We then rank those metrics based on their impact on the predictive model output. Our method achieves a mean accuracy of 58.5%, compared to a baseline accuracy of 44.8%, on a data set containing 1941 matches from five of the most influential leagues in Europe, the 2018 World Cup and the 2016 Euro Cup. The most important metrics for successful teams are the largest eigenvalue of the adjacency matrix, degree distribution statistics and the average shortest path length.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-28082024-162138/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257440610942976