Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência

Detalhes bibliográficos
Autor(a) principal: Gongora, Wylliam Salviano
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10092019-104925/
Resumo: As máquinas elétricas rotativas são hoje a principal forma de transformação da energia elétrica em mecânica motriz e os motores de indução trifásicos têm grande relevância dentro do setor produtivo. A garantia de um correto funcionamento torna-se vital para eficácia e competitividade da empresa dentro do setor fabril. Assim sendo, um correto diagnóstico e classificação de falhas de funcionamento dos motores em operação pode fornecer maior segurança no processo de tomada de decisão sobre a manutenção, aumentar a produtividade e eliminar os riscos e os danos aos processos como um todo. A proposição deste trabalho baseia-se na análise das correntes de estator no domínio da frequência com sinais injetados na máquina juntamente com a modulação de alimentação para o diagnóstico do motor sem defeitos, com falhas de curtocircuito nos enrolamentos do estator e com falhas de rotor. A proposta é validada numa ampla faixa de frequências de operação bem como de regimes de conjugado de carga. São analisados os desempenhos individuais de cinco técnicas de classificadores de padrões, sendo proposta a utilização de: i) Perceptron Multicamadas, ii) Máquina de Vetores de Suporte, iii) k-Vizinhos Próximos, iv) Árvore de Decisão C 4.5 e v) Naive Bayes. Complementarmente, é desenvolvido um comparativo dos métodos de classificação de padrões para avaliar a precisão de classificação frente aos diversos níveis de severidade das falhas. Resultados experimentais com motor de 1 cv são apresentados para validar a proposta.
id USP_b66085b250aa9892debf9240a6d00db9
oai_identifier_str oai:teses.usp.br:tde-10092019-104925
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referênciaIdentification of electrical faults in three-phase induction motors by reference signal Injectioncomputational intelligencefault multi-classifierfrequency inverterinteligência computacionalinversor de frequênciamotor de indução trifásicomulticlassificador de falhasthree-phase induction motorAs máquinas elétricas rotativas são hoje a principal forma de transformação da energia elétrica em mecânica motriz e os motores de indução trifásicos têm grande relevância dentro do setor produtivo. A garantia de um correto funcionamento torna-se vital para eficácia e competitividade da empresa dentro do setor fabril. Assim sendo, um correto diagnóstico e classificação de falhas de funcionamento dos motores em operação pode fornecer maior segurança no processo de tomada de decisão sobre a manutenção, aumentar a produtividade e eliminar os riscos e os danos aos processos como um todo. A proposição deste trabalho baseia-se na análise das correntes de estator no domínio da frequência com sinais injetados na máquina juntamente com a modulação de alimentação para o diagnóstico do motor sem defeitos, com falhas de curtocircuito nos enrolamentos do estator e com falhas de rotor. A proposta é validada numa ampla faixa de frequências de operação bem como de regimes de conjugado de carga. São analisados os desempenhos individuais de cinco técnicas de classificadores de padrões, sendo proposta a utilização de: i) Perceptron Multicamadas, ii) Máquina de Vetores de Suporte, iii) k-Vizinhos Próximos, iv) Árvore de Decisão C 4.5 e v) Naive Bayes. Complementarmente, é desenvolvido um comparativo dos métodos de classificação de padrões para avaliar a precisão de classificação frente aos diversos níveis de severidade das falhas. Resultados experimentais com motor de 1 cv são apresentados para validar a proposta.Rotating electric machines are today the main form of transformation of electrical energy in motor mechanics and three-phase induction motors have great relevance within the productive sector. Thus a correct diagnosis and classification of failures of the engines in operation can provide security in the decision making process on maintenance, increase productivity and eliminate risks and damages to processes as a whole. The purpose of this paper is based on the analysis of the stator currents in the frequency domain with signals injected into the machine together with the power modulation for the diagnosis of motor faultless, stator winding short-circuit faults and rotor faults. Considering also, for validation of the proposal is validated on a broad range frequency of operation as well as load torque. We analyze the individual performances of five standard classifier techniques, proposing the use of: i) Multilayers Perceptron, ii) Support Vector Machine, iii) k-Nearest Neighbor, iv) C 4.5 Decision Tree and v) Naive Bayes. Complementarily, a comparison of the methods of classification of standards is developed to evaluate the accuracy of classification against the different levels of severity of the failures. Experimental results with 735.5 w and 1.471 w engines are presented to validate the proposal.Biblioteca Digitais de Teses e Dissertações da USPSilva, Ivan Nunes daGongora, Wylliam Salviano2019-05-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18153/tde-10092019-104925/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-11-08T20:53:14Zoai:teses.usp.br:tde-10092019-104925Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T20:53:14Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
Identification of electrical faults in three-phase induction motors by reference signal Injection
title Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
spellingShingle Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
Gongora, Wylliam Salviano
computational intelligence
fault multi-classifier
frequency inverter
inteligência computacional
inversor de frequência
motor de indução trifásico
multiclassificador de falhas
three-phase induction motor
title_short Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
title_full Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
title_fullStr Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
title_full_unstemmed Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
title_sort Identificação de falhas elétricas em motores de indução trifásicos por injeção de sinal de referência
author Gongora, Wylliam Salviano
author_facet Gongora, Wylliam Salviano
author_role author
dc.contributor.none.fl_str_mv Silva, Ivan Nunes da
dc.contributor.author.fl_str_mv Gongora, Wylliam Salviano
dc.subject.por.fl_str_mv computational intelligence
fault multi-classifier
frequency inverter
inteligência computacional
inversor de frequência
motor de indução trifásico
multiclassificador de falhas
three-phase induction motor
topic computational intelligence
fault multi-classifier
frequency inverter
inteligência computacional
inversor de frequência
motor de indução trifásico
multiclassificador de falhas
three-phase induction motor
description As máquinas elétricas rotativas são hoje a principal forma de transformação da energia elétrica em mecânica motriz e os motores de indução trifásicos têm grande relevância dentro do setor produtivo. A garantia de um correto funcionamento torna-se vital para eficácia e competitividade da empresa dentro do setor fabril. Assim sendo, um correto diagnóstico e classificação de falhas de funcionamento dos motores em operação pode fornecer maior segurança no processo de tomada de decisão sobre a manutenção, aumentar a produtividade e eliminar os riscos e os danos aos processos como um todo. A proposição deste trabalho baseia-se na análise das correntes de estator no domínio da frequência com sinais injetados na máquina juntamente com a modulação de alimentação para o diagnóstico do motor sem defeitos, com falhas de curtocircuito nos enrolamentos do estator e com falhas de rotor. A proposta é validada numa ampla faixa de frequências de operação bem como de regimes de conjugado de carga. São analisados os desempenhos individuais de cinco técnicas de classificadores de padrões, sendo proposta a utilização de: i) Perceptron Multicamadas, ii) Máquina de Vetores de Suporte, iii) k-Vizinhos Próximos, iv) Árvore de Decisão C 4.5 e v) Naive Bayes. Complementarmente, é desenvolvido um comparativo dos métodos de classificação de padrões para avaliar a precisão de classificação frente aos diversos níveis de severidade das falhas. Resultados experimentais com motor de 1 cv são apresentados para validar a proposta.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10092019-104925/
url http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10092019-104925/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256921778683904