Size and optical versatility in rare earth oxysulfide photonic materials

Detalhes bibliográficos
Autor(a) principal: Machado, Ian Pompermayer
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/46/46136/tde-11112021-103329/
Resumo: Luminescent materials based on rare earth oxysulfides RE2O2S (RE: Sc, Y, La Lu) have been extensively researched due to their high chemical/thermal stability, additionally to their unique crystalline and electronic structures, which allow easy incorporation of lanthanide ions to generate highly luminescent materials. However, synthesizing these materials is a task far from trivial. The conventional solid state synthesis method, widely used by industry, employs high temperatures (>1000 °C) for long periods (>6 h), resulting in a high energy consumption, therefore increasing the costs of production. In addition, RE2O2S-based luminescent nanomaterials are of great interest for applications in the medical field, such as bioimaging, but they cannot be obtained by conventional methods. In this context, the objective of this doctorate was to synthesize photonic materials based on rare earth oxysulfides by exploring two distinct methodologies: i) the microwave-assisted solidstate (MASS) synthesis, aiming at optically versatile bulk materials, and ii) the colloidal synthesis in organic solvents, aiming at nanocrystals with high colloidal stability and high quantum efficiency. Initially, the MASS synthesis parameters were investigated and optimized for from an extensive ex-situ characterization of RE2O2S matrices, using techniques such as X-ray diffraction and synchrotron radiation X-ray absorption spectroscopy. The optimal synthesis condition was shown to be two heat treatments of 25 minutes each, using activated carbon as a microwave susceptor. Thus, several bulk (~1 µm) materials were prepared by this methodology, designed to exhibit versatile photonic properties: scintillation Gd2O2S:Tb, upconversion (UC) Gd2O2S:Er(,Yb), and persistent luminescence (PersL) Y2O2S:(Eu,Yb),Ti,Mg. Scintillating Gd2O2S:Tb3+ materials exhibited high emission efficiency (546 nm, 5D4→7F5) over a wide range of excitation energies, from UV (4 eV) to X-rays (8000 eV). For UC phenomenon, it was demonstrated that substituting the oxide Ln2O3 precursors by hydroxycarbonates Ln(OH)CO3 (Ln: Gd, Er, and Yb) led to an increase of the UC emission intensity in almost one order of magnitude, making MASS-synthesized materials comparable in efficiency to commercially available products. Furthermore, several PersL materials were prepared aiming at their potential for different applications. For instance, a new LED device was fabricated covering an UV LED chip with RE2O2S:Ti,Mg materials; this device yields warm-white light when turned on and a self-sustaining orange emission when turned off, being useful for safety lighting in cases of power outage. The RE2O2S:Yb,Ti,Mg materials were also synthesized, which display near-infrared (NIR - 983 nm) PersL, which are important for bioimaging applications. The PersL mechanism of such systems was investigated through a series thermoluminescence experiments on Y2O2S:Eu and Y2O2S:Eu,Ti,Mg materials, demonstrating that a synergetic effect among the three doping ions and the matrix is responsible for the supremacy of this red-emitting PersL material. The preparation of RE2O2S photonic materials by the MASS method consisted in a reduction of ≥ 85% in processing time and ≥ 95% in energy consumption compared to conventional solid-state synthesis methods. Finally, the colloidal synthesis method in organic solvents was developed and proved to be reproducible for the preparation of monodisperse Gd2O2S:Eu3+ and Y2O2S:Eu3+ nanomaterials. These nanocrystals were synthesized in the 20-30 nm size range, both exhibiting high luminescence efficiency in the red spectral region (626 nm, 5D0→7F2) in colloidal form. In addition, it has been shown that both oleylamine and oleic acid act as nucleation and crystal growth agents. Perspectives include the development of core-shell nanomaterials showing NIR absorption/emission, which are promising for monitoring/imaging biological processes.
id USP_b7127f9bddfd74e60040ad1b9ed6d10e
oai_identifier_str oai:teses.usp.br:tde-11112021-103329
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Size and optical versatility in rare earth oxysulfide photonic materialsVersatilidade ótica e de tamanho em materiais fotônicos de oxissulfetos de terras rarasCintilaçãoColloidal synthesisLuminescência persistenteLuminescent materialsMateriais luminescentesMicrowave synthesisOxissulfetos de terras rarasPersistent luminescenceRare earth oxysulfidesScintillationSíntese coloidalSíntese em micro-ondasUpconversionUpconversionLuminescent materials based on rare earth oxysulfides RE2O2S (RE: Sc, Y, La Lu) have been extensively researched due to their high chemical/thermal stability, additionally to their unique crystalline and electronic structures, which allow easy incorporation of lanthanide ions to generate highly luminescent materials. However, synthesizing these materials is a task far from trivial. The conventional solid state synthesis method, widely used by industry, employs high temperatures (>1000 °C) for long periods (>6 h), resulting in a high energy consumption, therefore increasing the costs of production. In addition, RE2O2S-based luminescent nanomaterials are of great interest for applications in the medical field, such as bioimaging, but they cannot be obtained by conventional methods. In this context, the objective of this doctorate was to synthesize photonic materials based on rare earth oxysulfides by exploring two distinct methodologies: i) the microwave-assisted solidstate (MASS) synthesis, aiming at optically versatile bulk materials, and ii) the colloidal synthesis in organic solvents, aiming at nanocrystals with high colloidal stability and high quantum efficiency. Initially, the MASS synthesis parameters were investigated and optimized for from an extensive ex-situ characterization of RE2O2S matrices, using techniques such as X-ray diffraction and synchrotron radiation X-ray absorption spectroscopy. The optimal synthesis condition was shown to be two heat treatments of 25 minutes each, using activated carbon as a microwave susceptor. Thus, several bulk (~1 µm) materials were prepared by this methodology, designed to exhibit versatile photonic properties: scintillation Gd2O2S:Tb, upconversion (UC) Gd2O2S:Er(,Yb), and persistent luminescence (PersL) Y2O2S:(Eu,Yb),Ti,Mg. Scintillating Gd2O2S:Tb3+ materials exhibited high emission efficiency (546 nm, 5D4→7F5) over a wide range of excitation energies, from UV (4 eV) to X-rays (8000 eV). For UC phenomenon, it was demonstrated that substituting the oxide Ln2O3 precursors by hydroxycarbonates Ln(OH)CO3 (Ln: Gd, Er, and Yb) led to an increase of the UC emission intensity in almost one order of magnitude, making MASS-synthesized materials comparable in efficiency to commercially available products. Furthermore, several PersL materials were prepared aiming at their potential for different applications. For instance, a new LED device was fabricated covering an UV LED chip with RE2O2S:Ti,Mg materials; this device yields warm-white light when turned on and a self-sustaining orange emission when turned off, being useful for safety lighting in cases of power outage. The RE2O2S:Yb,Ti,Mg materials were also synthesized, which display near-infrared (NIR - 983 nm) PersL, which are important for bioimaging applications. The PersL mechanism of such systems was investigated through a series thermoluminescence experiments on Y2O2S:Eu and Y2O2S:Eu,Ti,Mg materials, demonstrating that a synergetic effect among the three doping ions and the matrix is responsible for the supremacy of this red-emitting PersL material. The preparation of RE2O2S photonic materials by the MASS method consisted in a reduction of ≥ 85% in processing time and ≥ 95% in energy consumption compared to conventional solid-state synthesis methods. Finally, the colloidal synthesis method in organic solvents was developed and proved to be reproducible for the preparation of monodisperse Gd2O2S:Eu3+ and Y2O2S:Eu3+ nanomaterials. These nanocrystals were synthesized in the 20-30 nm size range, both exhibiting high luminescence efficiency in the red spectral region (626 nm, 5D0→7F2) in colloidal form. In addition, it has been shown that both oleylamine and oleic acid act as nucleation and crystal growth agents. Perspectives include the development of core-shell nanomaterials showing NIR absorption/emission, which are promising for monitoring/imaging biological processes.Materiais luminescentes baseados em oxissulfetos de terras raras RE2O2S (RE: Sc, Y, LaLu) vem sendo extensivamente pesquisados devido à sua elevada estabilidade química/térmica, além da suas estruturas cristalina e eletrônica singulares, que permitem a fácil incorporação de íons lantanídeos para gerar materiais com alta eficiência luminescente. Contudo, a preparação destes materiais é longe de ser simples. O método de síntese de estado sólido convencional, largamente utilizado pela indústria, emprega altas temperaturas (>1000 °C) por longos períodos (>6 h), acarretando um alto gasto energético e, consequentemente, um alto custo de produção destes materiais. Além disso, nanomateriais luminescentes de RE2O2S são de grande interesse para aplicações na área médica, como em bioimageamento, mas não podem ser obtidos por métodos convencionais. Neste contexto, o objetivo deste projeto de doutorado foi sintetizar materiais fotônicos de oxissulfeto de terras raras investigando duas metodologias distintas: i) a síntese no estado sólido assistida por micro-ondas (MASS), buscando materiais oticamente versáteis em escala micrométrica, e ii) a síntese coloidal em meio orgânico, buscando nanocristais com alta estabilidade coloidal e elevada eficiência quântica de emissão. Inicialmente, os parâmetros de síntese MASS foram investigados e otimizados para a partir de uma extensa caracterização ex-situ de matrizes RE2O2S, empregando técnicas como difração de raios X e espectroscopia de absorção de raios X utilizando radiação síncrotron. A condição ótima de síntese destes materiais provou-se ser: dois tratamentos térmicos de 25 min cada, empregando carbono ativado como susceptor de micro-ondas. Dessa forma, vários materiais micrométricos foram preparados por esta metodologia, delineados para exibir propriedades fotônicas diversas: cintilação de raios X Gd2O2S:Tb, upconversion (UC) Gd2O2S:Er(,Yb), e luminescência persistente (PersL) Y2O2S:(Eu,Yb),Ti,Mg. Os materiais cintiladores Gd2O2S:Tb3+ exibiram alta eficiência de emissão (546 nm, 5D4→7F5) sob uma ampla faixa de energias de excitação, desde o UV (4 eV) até os raios X (8000 eV). Para o fenômeno de UC, foi demonstrado que a substituição dos óxidos Ln2O3 precursores por hidroxicarbonatos Ln(OH)CO3 (Ln: Gd, Er e Yb) levou a um aumento de quase uma ordem de magnitude na intensidade de emissão UC, tornando os materiais preparados pelo método MASS comparáveis em eficiência a produtos disponíveis comercialmente. Ademais, vários materiais com PersL foram preparados, visando seu potencial para diferentes aplicações. Por exemplo, fabricou-se um novo dispositivo LED recobrindo um chip LED UV com materiais RE2O2S:Ti,Mg; este dispositivo emite luz branca quando ligado, e uma emissão laranja autossustentada quando desligado, útil para iluminação de segurança em casos de queda de energia. Também foram investigados materiais RE2O2S:Yb,Ti,Mg, que apresentam PersL na região do infravermelho próximo (983 nm), importantes para aplicações em bioimageamento. O mecanismo de PersL foi investigado a partir de ensaios de termoluminescência em materiais Y2O2:Eu e Y2O2S:Eu,Ti,Mg, demonstrando que um efeito sinérgico entre os três íons dopantes e a matriz é responsável pela supremacia deste material como emissor de PersL de cor vermelha. A preparação dos materiais RE2O2S pelo método MASS consistiu em uma redução de ≥ 85% em tempo de síntese e de ≥ 95% em consumo de energia comparado a métodos de síntese convencionais. Por fim, o método de síntese coloidal em solvente orgânico foi desenvolvido e mostrou-se reprodutível para a preparação de nanomateriais Gd2O2S:Eu3+ e Y2O2S:Eu3+. Os nanocristais apresentam tamanho na faixa 20-30 nm, com alta eficiência de emissão na região do vermelho (626 nm, 5D0→7F2). Além disso, demonstrou-se que tanto a oleilamina quanto o ácido oleico atuam na nucleação e no crescimento dos cristais. Os próximos desafios consistem em desenvolver nanomateriais tipo core-shell com absorção/emissão no infravermelho, promissoras para aplicações em monitoramento/imageamento de processos biológicos.Biblioteca Digitais de Teses e Dissertações da USPBrito, Hermi Felinto deRodrigues, Lucas Carvalho VelosoMachado, Ian Pompermayer2021-05-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46136/tde-11112021-103329/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-11-23T13:58:02Zoai:teses.usp.br:tde-11112021-103329Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-11-23T13:58:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Size and optical versatility in rare earth oxysulfide photonic materials
Versatilidade ótica e de tamanho em materiais fotônicos de oxissulfetos de terras raras
title Size and optical versatility in rare earth oxysulfide photonic materials
spellingShingle Size and optical versatility in rare earth oxysulfide photonic materials
Machado, Ian Pompermayer
Cintilação
Colloidal synthesis
Luminescência persistente
Luminescent materials
Materiais luminescentes
Microwave synthesis
Oxissulfetos de terras raras
Persistent luminescence
Rare earth oxysulfides
Scintillation
Síntese coloidal
Síntese em micro-ondas
Upconversion
Upconversion
title_short Size and optical versatility in rare earth oxysulfide photonic materials
title_full Size and optical versatility in rare earth oxysulfide photonic materials
title_fullStr Size and optical versatility in rare earth oxysulfide photonic materials
title_full_unstemmed Size and optical versatility in rare earth oxysulfide photonic materials
title_sort Size and optical versatility in rare earth oxysulfide photonic materials
author Machado, Ian Pompermayer
author_facet Machado, Ian Pompermayer
author_role author
dc.contributor.none.fl_str_mv Brito, Hermi Felinto de
Rodrigues, Lucas Carvalho Veloso
dc.contributor.author.fl_str_mv Machado, Ian Pompermayer
dc.subject.por.fl_str_mv Cintilação
Colloidal synthesis
Luminescência persistente
Luminescent materials
Materiais luminescentes
Microwave synthesis
Oxissulfetos de terras raras
Persistent luminescence
Rare earth oxysulfides
Scintillation
Síntese coloidal
Síntese em micro-ondas
Upconversion
Upconversion
topic Cintilação
Colloidal synthesis
Luminescência persistente
Luminescent materials
Materiais luminescentes
Microwave synthesis
Oxissulfetos de terras raras
Persistent luminescence
Rare earth oxysulfides
Scintillation
Síntese coloidal
Síntese em micro-ondas
Upconversion
Upconversion
description Luminescent materials based on rare earth oxysulfides RE2O2S (RE: Sc, Y, La Lu) have been extensively researched due to their high chemical/thermal stability, additionally to their unique crystalline and electronic structures, which allow easy incorporation of lanthanide ions to generate highly luminescent materials. However, synthesizing these materials is a task far from trivial. The conventional solid state synthesis method, widely used by industry, employs high temperatures (>1000 °C) for long periods (>6 h), resulting in a high energy consumption, therefore increasing the costs of production. In addition, RE2O2S-based luminescent nanomaterials are of great interest for applications in the medical field, such as bioimaging, but they cannot be obtained by conventional methods. In this context, the objective of this doctorate was to synthesize photonic materials based on rare earth oxysulfides by exploring two distinct methodologies: i) the microwave-assisted solidstate (MASS) synthesis, aiming at optically versatile bulk materials, and ii) the colloidal synthesis in organic solvents, aiming at nanocrystals with high colloidal stability and high quantum efficiency. Initially, the MASS synthesis parameters were investigated and optimized for from an extensive ex-situ characterization of RE2O2S matrices, using techniques such as X-ray diffraction and synchrotron radiation X-ray absorption spectroscopy. The optimal synthesis condition was shown to be two heat treatments of 25 minutes each, using activated carbon as a microwave susceptor. Thus, several bulk (~1 µm) materials were prepared by this methodology, designed to exhibit versatile photonic properties: scintillation Gd2O2S:Tb, upconversion (UC) Gd2O2S:Er(,Yb), and persistent luminescence (PersL) Y2O2S:(Eu,Yb),Ti,Mg. Scintillating Gd2O2S:Tb3+ materials exhibited high emission efficiency (546 nm, 5D4→7F5) over a wide range of excitation energies, from UV (4 eV) to X-rays (8000 eV). For UC phenomenon, it was demonstrated that substituting the oxide Ln2O3 precursors by hydroxycarbonates Ln(OH)CO3 (Ln: Gd, Er, and Yb) led to an increase of the UC emission intensity in almost one order of magnitude, making MASS-synthesized materials comparable in efficiency to commercially available products. Furthermore, several PersL materials were prepared aiming at their potential for different applications. For instance, a new LED device was fabricated covering an UV LED chip with RE2O2S:Ti,Mg materials; this device yields warm-white light when turned on and a self-sustaining orange emission when turned off, being useful for safety lighting in cases of power outage. The RE2O2S:Yb,Ti,Mg materials were also synthesized, which display near-infrared (NIR - 983 nm) PersL, which are important for bioimaging applications. The PersL mechanism of such systems was investigated through a series thermoluminescence experiments on Y2O2S:Eu and Y2O2S:Eu,Ti,Mg materials, demonstrating that a synergetic effect among the three doping ions and the matrix is responsible for the supremacy of this red-emitting PersL material. The preparation of RE2O2S photonic materials by the MASS method consisted in a reduction of ≥ 85% in processing time and ≥ 95% in energy consumption compared to conventional solid-state synthesis methods. Finally, the colloidal synthesis method in organic solvents was developed and proved to be reproducible for the preparation of monodisperse Gd2O2S:Eu3+ and Y2O2S:Eu3+ nanomaterials. These nanocrystals were synthesized in the 20-30 nm size range, both exhibiting high luminescence efficiency in the red spectral region (626 nm, 5D0→7F2) in colloidal form. In addition, it has been shown that both oleylamine and oleic acid act as nucleation and crystal growth agents. Perspectives include the development of core-shell nanomaterials showing NIR absorption/emission, which are promising for monitoring/imaging biological processes.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/46/46136/tde-11112021-103329/
url https://www.teses.usp.br/teses/disponiveis/46/46136/tde-11112021-103329/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256878944354304