Homeomorfismo em grafos: algoritmos e complexidade computacional

Detalhes bibliográficos
Autor(a) principal: Benatti, Haroldo Goncalves
Data de Publicação: 1993
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-004351/
Resumo: Neste trabalho estudamos varios problemas que envolvem homeomorfismo de grafos procurando responder questoes referentes a sua complexidade computacional e a existencia de algoritmos polinomiais para resolve-los. Estudamos relacoes entre aresta-homeomorfismo e vertice-homeomorfismo. Algumas destas relacoes sao utilizadas para provar a np-completude de varios problemas de homeoformismo sem padraofixo. No caso orientado, para os problemas com padrao fixo sao conhecidos algoritmos polinomiais, para apenas alguns padroes. Ja no caso nao orientado, existe um algoritmo polinoamial que resolve o problema de qualquer padrao, mas este algoritmo nao e suscetivel a uma implementacao eficiente. Isto motivou o estudo destes problemas com entradas restritas a classes particulares de grafos. Apresentamos algoritmos polinomiais, em alguns casos bem eficientes, para a classe dos grafosplanares. Por ultimo estudamos a complexidade de alguns problemas de modularidade de caminhos e circuitos em grafos orientados. Estes resultados foram obtidos usando problemas de homeomorfismo com padrao fixo. Analisamos a complexidade desses mesmos problemas quando restritos a classe dos grafos bipartidos e constatamos que esta restricao, em geral, nao altera a complexidade destes problemas
id USP_b7331fb7934a236cc8c07ada3a7f53db
oai_identifier_str oai:teses.usp.br:tde-20210729-004351
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Homeomorfismo em grafos: algoritmos e complexidade computacionalnot availableTeoria Dos GrafosNeste trabalho estudamos varios problemas que envolvem homeomorfismo de grafos procurando responder questoes referentes a sua complexidade computacional e a existencia de algoritmos polinomiais para resolve-los. Estudamos relacoes entre aresta-homeomorfismo e vertice-homeomorfismo. Algumas destas relacoes sao utilizadas para provar a np-completude de varios problemas de homeoformismo sem padraofixo. No caso orientado, para os problemas com padrao fixo sao conhecidos algoritmos polinomiais, para apenas alguns padroes. Ja no caso nao orientado, existe um algoritmo polinoamial que resolve o problema de qualquer padrao, mas este algoritmo nao e suscetivel a uma implementacao eficiente. Isto motivou o estudo destes problemas com entradas restritas a classes particulares de grafos. Apresentamos algoritmos polinomiais, em alguns casos bem eficientes, para a classe dos grafosplanares. Por ultimo estudamos a complexidade de alguns problemas de modularidade de caminhos e circuitos em grafos orientados. Estes resultados foram obtidos usando problemas de homeomorfismo com padrao fixo. Analisamos a complexidade desses mesmos problemas quando restritos a classe dos grafos bipartidos e constatamos que esta restricao, em geral, nao altera a complexidade destes problemasnot availableBiblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoBenatti, Haroldo Goncalves1993-10-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-004351/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T18:54:41Zoai:teses.usp.br:tde-20210729-004351Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T18:54:41Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Homeomorfismo em grafos: algoritmos e complexidade computacional
not available
title Homeomorfismo em grafos: algoritmos e complexidade computacional
spellingShingle Homeomorfismo em grafos: algoritmos e complexidade computacional
Benatti, Haroldo Goncalves
Teoria Dos Grafos
title_short Homeomorfismo em grafos: algoritmos e complexidade computacional
title_full Homeomorfismo em grafos: algoritmos e complexidade computacional
title_fullStr Homeomorfismo em grafos: algoritmos e complexidade computacional
title_full_unstemmed Homeomorfismo em grafos: algoritmos e complexidade computacional
title_sort Homeomorfismo em grafos: algoritmos e complexidade computacional
author Benatti, Haroldo Goncalves
author_facet Benatti, Haroldo Goncalves
author_role author
dc.contributor.none.fl_str_mv Wakabayashi, Yoshiko
dc.contributor.author.fl_str_mv Benatti, Haroldo Goncalves
dc.subject.por.fl_str_mv Teoria Dos Grafos
topic Teoria Dos Grafos
description Neste trabalho estudamos varios problemas que envolvem homeomorfismo de grafos procurando responder questoes referentes a sua complexidade computacional e a existencia de algoritmos polinomiais para resolve-los. Estudamos relacoes entre aresta-homeomorfismo e vertice-homeomorfismo. Algumas destas relacoes sao utilizadas para provar a np-completude de varios problemas de homeoformismo sem padraofixo. No caso orientado, para os problemas com padrao fixo sao conhecidos algoritmos polinomiais, para apenas alguns padroes. Ja no caso nao orientado, existe um algoritmo polinoamial que resolve o problema de qualquer padrao, mas este algoritmo nao e suscetivel a uma implementacao eficiente. Isto motivou o estudo destes problemas com entradas restritas a classes particulares de grafos. Apresentamos algoritmos polinomiais, em alguns casos bem eficientes, para a classe dos grafosplanares. Por ultimo estudamos a complexidade de alguns problemas de modularidade de caminhos e circuitos em grafos orientados. Estes resultados foram obtidos usando problemas de homeomorfismo com padrao fixo. Analisamos a complexidade desses mesmos problemas quando restritos a classe dos grafos bipartidos e constatamos que esta restricao, em geral, nao altera a complexidade destes problemas
publishDate 1993
dc.date.none.fl_str_mv 1993-10-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-004351/
url https://teses.usp.br/teses/disponiveis/45/45132/tde-20210729-004351/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257207090970624