Statistical modelling of data from insect studies

Detalhes bibliográficos
Autor(a) principal: Moral, Rafael de Andrade
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042018-153400/
Resumo: Data from insect studies may present different features. Univariate responses may be analyzed using generalized linear models (continuous and discrete data), survival models (time until event data), mixed effects models (longitudinal data), among other methods. These models may be used to analyse data from experiments which assess complex ecological processes, such as competition and predation. In that sense, computational tools are useful for researchers in several fields, e.g., insect biology and physiology, applied ecology and biological control. Using different datasets from entomology as motivation, as well as other types of datasets for illustration purposes, this work intended to develop new modelling frameworks and goodness-of-fit assessment tools. We propose accelerated failure rate mixed models with simultaneous location and scale modelling with regressors to analyse time-until-attack data from a choice test experiment. We use the exponential, Weibull and exponentiated-Weibull models, and assess goodness-of-fit using half-normal plots with simulation envelopes. These plots are the subject of an entire Chapter on an R package, called hnp, developed to implement them. We use datasets from different types of experiments to illustrate the use of these plots and the package. A bivariate extension to the N-mixture modelling framework is proposed to analyse longitudinal count data for two species from the same food web that may interact directly or indirectly, and example datasets from ecological studies are used. An advantage of this modelling framework is the computation of an asymmetric correlation coefficient, which may be used by ecologists to study the degree of association between species. The jointNmix R package was also developed to implement the estimation process for these models. Finally, we propose a goodness-of-fit assessment tool for bivariate models, analogous to the half-normal plot with a simulation envelope, and illustrate the approach with simulated data and insect competition data. This tool is also implemented in an R package, called bivrp. All software developed in this thesis is made available freely on the Comprehensive R Archive Network.
id USP_b7dd919068c44658a4b45b18c5693412
oai_identifier_str oai:teses.usp.br:tde-06042018-153400
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Statistical modelling of data from insect studiesModelagem estatística de dados provenientes de estudos em entomologiaAnálise de sobrevivênciaAvaliação da qualidade do ajusteEcological statisticsEstatística ecológicaGoodness-of-fit assessmentJoint modelsMixed modelsModelos conjuntosModelos mistosR softwareSoftware RSurvival analysisData from insect studies may present different features. Univariate responses may be analyzed using generalized linear models (continuous and discrete data), survival models (time until event data), mixed effects models (longitudinal data), among other methods. These models may be used to analyse data from experiments which assess complex ecological processes, such as competition and predation. In that sense, computational tools are useful for researchers in several fields, e.g., insect biology and physiology, applied ecology and biological control. Using different datasets from entomology as motivation, as well as other types of datasets for illustration purposes, this work intended to develop new modelling frameworks and goodness-of-fit assessment tools. We propose accelerated failure rate mixed models with simultaneous location and scale modelling with regressors to analyse time-until-attack data from a choice test experiment. We use the exponential, Weibull and exponentiated-Weibull models, and assess goodness-of-fit using half-normal plots with simulation envelopes. These plots are the subject of an entire Chapter on an R package, called hnp, developed to implement them. We use datasets from different types of experiments to illustrate the use of these plots and the package. A bivariate extension to the N-mixture modelling framework is proposed to analyse longitudinal count data for two species from the same food web that may interact directly or indirectly, and example datasets from ecological studies are used. An advantage of this modelling framework is the computation of an asymmetric correlation coefficient, which may be used by ecologists to study the degree of association between species. The jointNmix R package was also developed to implement the estimation process for these models. Finally, we propose a goodness-of-fit assessment tool for bivariate models, analogous to the half-normal plot with a simulation envelope, and illustrate the approach with simulated data and insect competition data. This tool is also implemented in an R package, called bivrp. All software developed in this thesis is made available freely on the Comprehensive R Archive Network.Dados provenientes de estudos com insetos podem apresentar características diferentes. Respostas univariadas podem ser analisadas utilizando-se modelos lineares generalizados (dados contínuos e discretos), modelos de análise de sobrevivência (dados de tempo até ocorrência de um evento), modelos de efeitos mistos (dados longitudinais), dentre outros métodos. Esses modelos podem ser usados para analisar dados provenientes de experimentos que avaliam processos ecológicos complexos, como competição e predação. Nesse sentido, ferramentas computacionais são úteis para pesquisadores em diversos campos, por exemplo, biologia e fisiologia de insetos, ecologia aplicada e controle biológico. Utilizando diferentes conjuntos de dados entomológicos como motivação, assim como outros tipos de dados para ilustrar os métodos, este trabalho teve como objetivos desenvolver novos modelos e ferramentas para avaliar a qualidade do ajuste. Foram propostos modelos de tempo de vida acelerado mistos, com modelagem simultânea dos parâmetros de locação e de escala com regressores, para analisar dados de tempo até ataque de um experimento que avaliou escolha de predadores. Foram utilizados modelos exponencial, Weibull e Weibull-exponenciado, e a qualidade do ajuste foi avaliada utilizando gráficos meio-normais com envelope de simulação. Esses gráficos são o assunto de um Capítulo inteiro sobre um pacote para o software R, chamado hnp, desenvolvido para implementá-los. Foram utilizados conjuntos de dados de diferentes tipos de experimentos para ilustrar o uso desses gráficos e do pacote. Uma extensão bivariada para os modelos chamados \"N-mixture\" foi proposta para analisar dados longitudinais de contagem para duas espécies pertencentes à mesma teia trófica, que podem interagir direta e indiretamente, e conjuntos de dados provenientes de estudos ecológicos são usados para ilustrar a abordagem. Uma vantagem dessa estratégica de modelagem é a obtenção de um coeficiente de correlação assimétrico, que pode ser utilizado por ecologistas para inferir acerca do grau de associação entre espécies. O pacote jointNmix foi desenvolvido para implemetar o processo de estimação para esses modelos. Finalmente, foi proposta uma ferramenta de avaliação de qualidade do ajuste para modelos bivariados, análoga ao gráfico meio-normal com envelope de simulação, e a metodologia _e ilustrada com dados simulados e dados de competição de insetos. Essa ferramenta está também implementada em um pacote para o R, chamado bivrp. Todo o software desenvolvido nesta tese está disponível, gratuitamente, na Comprehensive R Archive Network (CRAN).Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesMoral, Rafael de Andrade2017-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042018-153400/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-19T20:50:39Zoai:teses.usp.br:tde-06042018-153400Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Statistical modelling of data from insect studies
Modelagem estatística de dados provenientes de estudos em entomologia
title Statistical modelling of data from insect studies
spellingShingle Statistical modelling of data from insect studies
Moral, Rafael de Andrade
Análise de sobrevivência
Avaliação da qualidade do ajuste
Ecological statistics
Estatística ecológica
Goodness-of-fit assessment
Joint models
Mixed models
Modelos conjuntos
Modelos mistos
R software
Software R
Survival analysis
title_short Statistical modelling of data from insect studies
title_full Statistical modelling of data from insect studies
title_fullStr Statistical modelling of data from insect studies
title_full_unstemmed Statistical modelling of data from insect studies
title_sort Statistical modelling of data from insect studies
author Moral, Rafael de Andrade
author_facet Moral, Rafael de Andrade
author_role author
dc.contributor.none.fl_str_mv Demetrio, Clarice Garcia Borges
dc.contributor.author.fl_str_mv Moral, Rafael de Andrade
dc.subject.por.fl_str_mv Análise de sobrevivência
Avaliação da qualidade do ajuste
Ecological statistics
Estatística ecológica
Goodness-of-fit assessment
Joint models
Mixed models
Modelos conjuntos
Modelos mistos
R software
Software R
Survival analysis
topic Análise de sobrevivência
Avaliação da qualidade do ajuste
Ecological statistics
Estatística ecológica
Goodness-of-fit assessment
Joint models
Mixed models
Modelos conjuntos
Modelos mistos
R software
Software R
Survival analysis
description Data from insect studies may present different features. Univariate responses may be analyzed using generalized linear models (continuous and discrete data), survival models (time until event data), mixed effects models (longitudinal data), among other methods. These models may be used to analyse data from experiments which assess complex ecological processes, such as competition and predation. In that sense, computational tools are useful for researchers in several fields, e.g., insect biology and physiology, applied ecology and biological control. Using different datasets from entomology as motivation, as well as other types of datasets for illustration purposes, this work intended to develop new modelling frameworks and goodness-of-fit assessment tools. We propose accelerated failure rate mixed models with simultaneous location and scale modelling with regressors to analyse time-until-attack data from a choice test experiment. We use the exponential, Weibull and exponentiated-Weibull models, and assess goodness-of-fit using half-normal plots with simulation envelopes. These plots are the subject of an entire Chapter on an R package, called hnp, developed to implement them. We use datasets from different types of experiments to illustrate the use of these plots and the package. A bivariate extension to the N-mixture modelling framework is proposed to analyse longitudinal count data for two species from the same food web that may interact directly or indirectly, and example datasets from ecological studies are used. An advantage of this modelling framework is the computation of an asymmetric correlation coefficient, which may be used by ecologists to study the degree of association between species. The jointNmix R package was also developed to implement the estimation process for these models. Finally, we propose a goodness-of-fit assessment tool for bivariate models, analogous to the half-normal plot with a simulation envelope, and illustrate the approach with simulated data and insect competition data. This tool is also implemented in an R package, called bivrp. All software developed in this thesis is made available freely on the Comprehensive R Archive Network.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042018-153400/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-06042018-153400/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256711805534208