SVM aplicado a criptomoeda Etherium
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55137/tde-04022020-121437/ |
Resumo: | A introdução da Blockchain e das criptomoedas trouxeram novas formas de realizar pagamentos, contratos, etc. Além desses benefícios, as criptomoedas também e tornaram opções de investimento para investidores. Esses investimentos apresentam grande risco, pois tem uma variabilidade muito alta, por exemplo a ETH, desde a sua criação, apresenta um crescimento de 13:000% desde 2014, onde foi oferta inicial da moeda. Esse projeto propõe a criação de modelos estatísticos clássicos e de aprendizado de máquina, para prever uma hora a frente o valor da criptomoeda. Para isso, inicialmente realizamos uma simulação com uma série de Lorenz, onde ajustamos um modelo ARMA e uma maquina de vetores de suporte com o Kernel Laplaciano para verificar a eficiência das técnicas. Iniciamos criando a série de Lorenz, ajustando os modelos e realizando previsões um passo a frente 24 vezes. Para verificarmos a qualidade do nosso modelo, comparamos esses valores preditos com os valores reais da série, e usamos como indicadores de qualidade as medidas RMSE e MAE, que na simulação resultaram para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,66 e MAE = 2,5. Utilizando os valores preditos por ambos os modelos ajustados, buscamos melhorar a precisão combinando os modelos, obtendo assim para o SVR-ARMA RMSE = 2,23 e MAE = 1,77, melhorando assim a qualidade preditiva dos modelos. Seguimos aplicando para os dados reais as técnicas, inicialmente aplicando uma transformação log-retornos para a série de dados, e obtemos para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,15 e MAE = 2,4, e quando combinamos os modelos temos o SVR-ARMA RMSE = 2,08 e MAE = 1, 75. |
id |
USP_bb98f4ab696536d6f3c823fd766b1c17 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04022020-121437 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
SVM aplicado a criptomoeda EtheriumSVM applied to criptocurrency EtheriumCriptocurrencyCriptomoedasEtheriumEtheriumMáquinas de vetor de suporteSupport Vector MachineSVRSVRA introdução da Blockchain e das criptomoedas trouxeram novas formas de realizar pagamentos, contratos, etc. Além desses benefícios, as criptomoedas também e tornaram opções de investimento para investidores. Esses investimentos apresentam grande risco, pois tem uma variabilidade muito alta, por exemplo a ETH, desde a sua criação, apresenta um crescimento de 13:000% desde 2014, onde foi oferta inicial da moeda. Esse projeto propõe a criação de modelos estatísticos clássicos e de aprendizado de máquina, para prever uma hora a frente o valor da criptomoeda. Para isso, inicialmente realizamos uma simulação com uma série de Lorenz, onde ajustamos um modelo ARMA e uma maquina de vetores de suporte com o Kernel Laplaciano para verificar a eficiência das técnicas. Iniciamos criando a série de Lorenz, ajustando os modelos e realizando previsões um passo a frente 24 vezes. Para verificarmos a qualidade do nosso modelo, comparamos esses valores preditos com os valores reais da série, e usamos como indicadores de qualidade as medidas RMSE e MAE, que na simulação resultaram para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,66 e MAE = 2,5. Utilizando os valores preditos por ambos os modelos ajustados, buscamos melhorar a precisão combinando os modelos, obtendo assim para o SVR-ARMA RMSE = 2,23 e MAE = 1,77, melhorando assim a qualidade preditiva dos modelos. Seguimos aplicando para os dados reais as técnicas, inicialmente aplicando uma transformação log-retornos para a série de dados, e obtemos para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,15 e MAE = 2,4, e quando combinamos os modelos temos o SVR-ARMA RMSE = 2,08 e MAE = 1, 75.The introduction of Blockchain and criptocurrency boght new ways to make payments, contracts, etc. Besides these benefits, the criptocoins became an investment option for investors. These investments present great risk, due to high variability, for example ETH, since its creation, its growth reached 13:000% since 2014, when it was its Initial Coin Offer. This project proposes the creation of classical statistical models and machine learning, to predict one hour ahead the value of the criptocurrency. For that purpose, initialy we simulate a Lorez series, and fit a ARMA model and a SVM with a Laplacian Kernel to verify the tecnique eficiency. We create the simulated Lorez time series, adjust the model and calculate predictions one step ahead 24 times. For model quality we compare these prediicted values with the real values of the series, and use as quality indicators RMSE and MAE, that in the simulation reulted for the ARMA(2,3) model a RMSE = 2,23 e MAE = 1,85 and the SVR RMSE = 3,66 and MAE = 2,5. Using both fitted models predicted values, to improve the prediction, we combine the models, resulting in an SVRARMA with RMSE = 2,23 and MAE = 1,77, improving the predictive quality of the models. WE follow applying the tecniques in the real data, firstly applying a log-returns transformation in the data, and adjusting the model ARMA(2,3) with RMSE = 2,23 and MAE = 1,85 and SVR with RMSE = 3,15 and MAE = 2,4, with the combine model SVR-ARMA with RMSE = 2,08 and MAE = 1, 75.Biblioteca Digitais de Teses e Dissertações da USPLouzada Neto, FranciscoGonçalves, Claudio Vinicius2019-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55137/tde-04022020-121437/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-02-04T17:25:02Zoai:teses.usp.br:tde-04022020-121437Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-04T17:25:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
SVM aplicado a criptomoeda Etherium SVM applied to criptocurrency Etherium |
title |
SVM aplicado a criptomoeda Etherium |
spellingShingle |
SVM aplicado a criptomoeda Etherium Gonçalves, Claudio Vinicius Criptocurrency Criptomoedas Etherium Etherium Máquinas de vetor de suporte Support Vector Machine SVR SVR |
title_short |
SVM aplicado a criptomoeda Etherium |
title_full |
SVM aplicado a criptomoeda Etherium |
title_fullStr |
SVM aplicado a criptomoeda Etherium |
title_full_unstemmed |
SVM aplicado a criptomoeda Etherium |
title_sort |
SVM aplicado a criptomoeda Etherium |
author |
Gonçalves, Claudio Vinicius |
author_facet |
Gonçalves, Claudio Vinicius |
author_role |
author |
dc.contributor.none.fl_str_mv |
Louzada Neto, Francisco |
dc.contributor.author.fl_str_mv |
Gonçalves, Claudio Vinicius |
dc.subject.por.fl_str_mv |
Criptocurrency Criptomoedas Etherium Etherium Máquinas de vetor de suporte Support Vector Machine SVR SVR |
topic |
Criptocurrency Criptomoedas Etherium Etherium Máquinas de vetor de suporte Support Vector Machine SVR SVR |
description |
A introdução da Blockchain e das criptomoedas trouxeram novas formas de realizar pagamentos, contratos, etc. Além desses benefícios, as criptomoedas também e tornaram opções de investimento para investidores. Esses investimentos apresentam grande risco, pois tem uma variabilidade muito alta, por exemplo a ETH, desde a sua criação, apresenta um crescimento de 13:000% desde 2014, onde foi oferta inicial da moeda. Esse projeto propõe a criação de modelos estatísticos clássicos e de aprendizado de máquina, para prever uma hora a frente o valor da criptomoeda. Para isso, inicialmente realizamos uma simulação com uma série de Lorenz, onde ajustamos um modelo ARMA e uma maquina de vetores de suporte com o Kernel Laplaciano para verificar a eficiência das técnicas. Iniciamos criando a série de Lorenz, ajustando os modelos e realizando previsões um passo a frente 24 vezes. Para verificarmos a qualidade do nosso modelo, comparamos esses valores preditos com os valores reais da série, e usamos como indicadores de qualidade as medidas RMSE e MAE, que na simulação resultaram para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,66 e MAE = 2,5. Utilizando os valores preditos por ambos os modelos ajustados, buscamos melhorar a precisão combinando os modelos, obtendo assim para o SVR-ARMA RMSE = 2,23 e MAE = 1,77, melhorando assim a qualidade preditiva dos modelos. Seguimos aplicando para os dados reais as técnicas, inicialmente aplicando uma transformação log-retornos para a série de dados, e obtemos para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,15 e MAE = 2,4, e quando combinamos os modelos temos o SVR-ARMA RMSE = 2,08 e MAE = 1, 75. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-04022020-121437/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-04022020-121437/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826318406888980480 |