Application of deep learning for high-resolution flood mapping in urban watersheds

Detalhes bibliográficos
Autor(a) principal: Lago, Cesar Ambrogi Ferreira do
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/
Resumo: Flood events significantly threaten urban environments, causing substantial economic damage and loss of life. Accurate prediction and mapping of these events are crucial for effective mitigation strategies. However, current hydrodynamic models used for flood prediction are expensive to build and often impractical for real-time applications or simulations on large domains due to long computational times. This dissertation explores the utility of Deep Learning (DL) models as a viable alternative for flood prediction and floodplain mapping, addressing the evident gap in current flood modeling practices. The research implements a three-fold methodology across three chapters, focusing on developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood). Chapter 1 demonstrates a novel DL application – improving flood mapping resolution from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines the creation of a novel model that predicts pluvial flood maps using ANN, requiring only Digital Elevation Models (DEM) and inflow inputs. General results across the chapters show the promising efficacy of ANNs and DL models in flood prediction and floodplain mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high precision, while cGAN-Flood\'s application showed satisfactory predictive capabilities even in geographically distinct and topologically different regions. The newly proposed model in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of its training data. In conclusion, the research demonstrates that DL models, with further enhancements and training, can transform floodplain mapping and prediction, supporting faster simulations and extending applicability to different locations without retraining. This research underscores the potential of these models in bridging the gaps in current flood modeling practices, which is particularly significant for real-time flood prediction and the development of mitigation strategies, especially in developing regions where resources may be scarce or in larger domains.
id USP_bbf54e3448cf9b47d15d90e95b0211f4
oai_identifier_str oai:teses.usp.br:tde-18042024-113247
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Application of deep learning for high-resolution flood mapping in urban watershedsAplicação de aprendizado profundo para mapeamento de inundações em alta resolução em bacias urbanasaprendizado profundoartificial neural networkschuva no griddeep learninghigh-resolution flood mappingmapeamento de inundações de alta resoluçãomodelos de inundações rápidosrain-on-gridrapid flood modelsredes neurais artificiaisFlood events significantly threaten urban environments, causing substantial economic damage and loss of life. Accurate prediction and mapping of these events are crucial for effective mitigation strategies. However, current hydrodynamic models used for flood prediction are expensive to build and often impractical for real-time applications or simulations on large domains due to long computational times. This dissertation explores the utility of Deep Learning (DL) models as a viable alternative for flood prediction and floodplain mapping, addressing the evident gap in current flood modeling practices. The research implements a three-fold methodology across three chapters, focusing on developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood). Chapter 1 demonstrates a novel DL application – improving flood mapping resolution from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines the creation of a novel model that predicts pluvial flood maps using ANN, requiring only Digital Elevation Models (DEM) and inflow inputs. General results across the chapters show the promising efficacy of ANNs and DL models in flood prediction and floodplain mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high precision, while cGAN-Flood\'s application showed satisfactory predictive capabilities even in geographically distinct and topologically different regions. The newly proposed model in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of its training data. In conclusion, the research demonstrates that DL models, with further enhancements and training, can transform floodplain mapping and prediction, supporting faster simulations and extending applicability to different locations without retraining. This research underscores the potential of these models in bridging the gaps in current flood modeling practices, which is particularly significant for real-time flood prediction and the development of mitigation strategies, especially in developing regions where resources may be scarce or in larger domains.Eventos de inundação ameaçam ambientes urbanos, causando danos econômicos e perda de vidas. A previsão e o mapeamento desses eventos são cruciais para uma mitigação eficaz. No entanto, os atuais modelos hidrodinâmicos usados para a previsão de inundações são caros e muitas vezes impraticáveis para previsão em tempo real ou simulações em grande áreas pelos longos tempos de simulação. Esta tese explora modelos de Deep Learning (DL) como uma alternativa viável para a previsão de inundações e o mapeamento de planícies de inundação, abordando a lacuna nas práticas atuais de modelagem de inundações. A pesquisa foi dividida em três capítulos, focando no desenvolvimento e aplicação de Redes Neurais Artificiais (ANNs) para a previsão de inundações. Os capítulos 1 e 2 usam uma rede adversarial generativa condicional desenvolvida para previsões rápidas de inundações pluviais (cGAN-Flood). O Capítulo 1 demonstra uma nova aplicação de DL - aprimorar a resolução do mapeamento de inundações a partir de modelos hidrodinâmicos existentes usando cGAN-Flood. O Capítulo 2 avalia o desempenho do cGAN-Flood em ambientes topológicos distintos, especificamente bacias hidrográficas em São Paulo, comparado ao seu treinamento original em San Antonio, Texas. Por fim, o Capítulo 3 descreve a criação de um novo modelo que prevê mapas de inundações fluviais usando ANN, requerendo apenas Modelos Digitais de Elevação (DEM) e hidrogramas. Os resultados mostrados nos capítulos mostram uma eficácia promissora das ANNs na previsão de inundações e no mapeamento de de inundação. As ANNs demonstraram a capacidade de emular modelos hidrodinâmicos com alta precisão. Enquanto a aplicação do cGAN-Flood mostrou uma performance satisfatórias, mesmo em regiões geograficamente distintas e topologicamente diferentes, o novo modelo proposto no Capítulo 3 se comparou favoravelmente aos mapas de planícies de inundação da FEMA, apesar da simplicidade de seus dados de treinamento. Em conclusão, a pesquisa demonstra que os modelos DL, com mais desenvolvimento e treinamento, têm o potencial para aprimorar previsão de planícies de inundação, devido a simulações mais rápidas e estendendo a aplicabilidade a diferentes localizações sem re-treinamento. Esta pesquisa destaca o potencial desses modelos em preencher as lacunas nas práticas atuais de modelagem de inundações, o que é particularmente significativo para a previsão de inundações em tempo real e o desenvolvimento de estratégias de mitigação, especialmente em regiões em desenvolvimento, onde os recursos podem ser escassos, ou em maior escala.Biblioteca Digitais de Teses e Dissertações da USPMendiondo, Eduardo MarioLago, Cesar Ambrogi Ferreira do2023-09-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-10T13:17:02Zoai:teses.usp.br:tde-18042024-113247Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-10T13:17:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Application of deep learning for high-resolution flood mapping in urban watersheds
Aplicação de aprendizado profundo para mapeamento de inundações em alta resolução em bacias urbanas
title Application of deep learning for high-resolution flood mapping in urban watersheds
spellingShingle Application of deep learning for high-resolution flood mapping in urban watersheds
Lago, Cesar Ambrogi Ferreira do
aprendizado profundo
artificial neural networks
chuva no grid
deep learning
high-resolution flood mapping
mapeamento de inundações de alta resolução
modelos de inundações rápidos
rain-on-grid
rapid flood models
redes neurais artificiais
title_short Application of deep learning for high-resolution flood mapping in urban watersheds
title_full Application of deep learning for high-resolution flood mapping in urban watersheds
title_fullStr Application of deep learning for high-resolution flood mapping in urban watersheds
title_full_unstemmed Application of deep learning for high-resolution flood mapping in urban watersheds
title_sort Application of deep learning for high-resolution flood mapping in urban watersheds
author Lago, Cesar Ambrogi Ferreira do
author_facet Lago, Cesar Ambrogi Ferreira do
author_role author
dc.contributor.none.fl_str_mv Mendiondo, Eduardo Mario
dc.contributor.author.fl_str_mv Lago, Cesar Ambrogi Ferreira do
dc.subject.por.fl_str_mv aprendizado profundo
artificial neural networks
chuva no grid
deep learning
high-resolution flood mapping
mapeamento de inundações de alta resolução
modelos de inundações rápidos
rain-on-grid
rapid flood models
redes neurais artificiais
topic aprendizado profundo
artificial neural networks
chuva no grid
deep learning
high-resolution flood mapping
mapeamento de inundações de alta resolução
modelos de inundações rápidos
rain-on-grid
rapid flood models
redes neurais artificiais
description Flood events significantly threaten urban environments, causing substantial economic damage and loss of life. Accurate prediction and mapping of these events are crucial for effective mitigation strategies. However, current hydrodynamic models used for flood prediction are expensive to build and often impractical for real-time applications or simulations on large domains due to long computational times. This dissertation explores the utility of Deep Learning (DL) models as a viable alternative for flood prediction and floodplain mapping, addressing the evident gap in current flood modeling practices. The research implements a three-fold methodology across three chapters, focusing on developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood). Chapter 1 demonstrates a novel DL application – improving flood mapping resolution from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines the creation of a novel model that predicts pluvial flood maps using ANN, requiring only Digital Elevation Models (DEM) and inflow inputs. General results across the chapters show the promising efficacy of ANNs and DL models in flood prediction and floodplain mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high precision, while cGAN-Flood\'s application showed satisfactory predictive capabilities even in geographically distinct and topologically different regions. The newly proposed model in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of its training data. In conclusion, the research demonstrates that DL models, with further enhancements and training, can transform floodplain mapping and prediction, supporting faster simulations and extending applicability to different locations without retraining. This research underscores the potential of these models in bridging the gaps in current flood modeling practices, which is particularly significant for real-time flood prediction and the development of mitigation strategies, especially in developing regions where resources may be scarce or in larger domains.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/
url https://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257097636413440