Application of deep learning for high-resolution flood mapping in urban watersheds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/ |
Resumo: | Flood events significantly threaten urban environments, causing substantial economic damage and loss of life. Accurate prediction and mapping of these events are crucial for effective mitigation strategies. However, current hydrodynamic models used for flood prediction are expensive to build and often impractical for real-time applications or simulations on large domains due to long computational times. This dissertation explores the utility of Deep Learning (DL) models as a viable alternative for flood prediction and floodplain mapping, addressing the evident gap in current flood modeling practices. The research implements a three-fold methodology across three chapters, focusing on developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood). Chapter 1 demonstrates a novel DL application – improving flood mapping resolution from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines the creation of a novel model that predicts pluvial flood maps using ANN, requiring only Digital Elevation Models (DEM) and inflow inputs. General results across the chapters show the promising efficacy of ANNs and DL models in flood prediction and floodplain mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high precision, while cGAN-Flood\'s application showed satisfactory predictive capabilities even in geographically distinct and topologically different regions. The newly proposed model in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of its training data. In conclusion, the research demonstrates that DL models, with further enhancements and training, can transform floodplain mapping and prediction, supporting faster simulations and extending applicability to different locations without retraining. This research underscores the potential of these models in bridging the gaps in current flood modeling practices, which is particularly significant for real-time flood prediction and the development of mitigation strategies, especially in developing regions where resources may be scarce or in larger domains. |
id |
USP_bbf54e3448cf9b47d15d90e95b0211f4 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18042024-113247 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Application of deep learning for high-resolution flood mapping in urban watershedsAplicação de aprendizado profundo para mapeamento de inundações em alta resolução em bacias urbanasaprendizado profundoartificial neural networkschuva no griddeep learninghigh-resolution flood mappingmapeamento de inundações de alta resoluçãomodelos de inundações rápidosrain-on-gridrapid flood modelsredes neurais artificiaisFlood events significantly threaten urban environments, causing substantial economic damage and loss of life. Accurate prediction and mapping of these events are crucial for effective mitigation strategies. However, current hydrodynamic models used for flood prediction are expensive to build and often impractical for real-time applications or simulations on large domains due to long computational times. This dissertation explores the utility of Deep Learning (DL) models as a viable alternative for flood prediction and floodplain mapping, addressing the evident gap in current flood modeling practices. The research implements a three-fold methodology across three chapters, focusing on developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood). Chapter 1 demonstrates a novel DL application – improving flood mapping resolution from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines the creation of a novel model that predicts pluvial flood maps using ANN, requiring only Digital Elevation Models (DEM) and inflow inputs. General results across the chapters show the promising efficacy of ANNs and DL models in flood prediction and floodplain mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high precision, while cGAN-Flood\'s application showed satisfactory predictive capabilities even in geographically distinct and topologically different regions. The newly proposed model in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of its training data. In conclusion, the research demonstrates that DL models, with further enhancements and training, can transform floodplain mapping and prediction, supporting faster simulations and extending applicability to different locations without retraining. This research underscores the potential of these models in bridging the gaps in current flood modeling practices, which is particularly significant for real-time flood prediction and the development of mitigation strategies, especially in developing regions where resources may be scarce or in larger domains.Eventos de inundação ameaçam ambientes urbanos, causando danos econômicos e perda de vidas. A previsão e o mapeamento desses eventos são cruciais para uma mitigação eficaz. No entanto, os atuais modelos hidrodinâmicos usados para a previsão de inundações são caros e muitas vezes impraticáveis para previsão em tempo real ou simulações em grande áreas pelos longos tempos de simulação. Esta tese explora modelos de Deep Learning (DL) como uma alternativa viável para a previsão de inundações e o mapeamento de planícies de inundação, abordando a lacuna nas práticas atuais de modelagem de inundações. A pesquisa foi dividida em três capítulos, focando no desenvolvimento e aplicação de Redes Neurais Artificiais (ANNs) para a previsão de inundações. Os capítulos 1 e 2 usam uma rede adversarial generativa condicional desenvolvida para previsões rápidas de inundações pluviais (cGAN-Flood). O Capítulo 1 demonstra uma nova aplicação de DL - aprimorar a resolução do mapeamento de inundações a partir de modelos hidrodinâmicos existentes usando cGAN-Flood. O Capítulo 2 avalia o desempenho do cGAN-Flood em ambientes topológicos distintos, especificamente bacias hidrográficas em São Paulo, comparado ao seu treinamento original em San Antonio, Texas. Por fim, o Capítulo 3 descreve a criação de um novo modelo que prevê mapas de inundações fluviais usando ANN, requerendo apenas Modelos Digitais de Elevação (DEM) e hidrogramas. Os resultados mostrados nos capítulos mostram uma eficácia promissora das ANNs na previsão de inundações e no mapeamento de de inundação. As ANNs demonstraram a capacidade de emular modelos hidrodinâmicos com alta precisão. Enquanto a aplicação do cGAN-Flood mostrou uma performance satisfatórias, mesmo em regiões geograficamente distintas e topologicamente diferentes, o novo modelo proposto no Capítulo 3 se comparou favoravelmente aos mapas de planícies de inundação da FEMA, apesar da simplicidade de seus dados de treinamento. Em conclusão, a pesquisa demonstra que os modelos DL, com mais desenvolvimento e treinamento, têm o potencial para aprimorar previsão de planícies de inundação, devido a simulações mais rápidas e estendendo a aplicabilidade a diferentes localizações sem re-treinamento. Esta pesquisa destaca o potencial desses modelos em preencher as lacunas nas práticas atuais de modelagem de inundações, o que é particularmente significativo para a previsão de inundações em tempo real e o desenvolvimento de estratégias de mitigação, especialmente em regiões em desenvolvimento, onde os recursos podem ser escassos, ou em maior escala.Biblioteca Digitais de Teses e Dissertações da USPMendiondo, Eduardo MarioLago, Cesar Ambrogi Ferreira do2023-09-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-05-10T13:17:02Zoai:teses.usp.br:tde-18042024-113247Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-10T13:17:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Application of deep learning for high-resolution flood mapping in urban watersheds Aplicação de aprendizado profundo para mapeamento de inundações em alta resolução em bacias urbanas |
title |
Application of deep learning for high-resolution flood mapping in urban watersheds |
spellingShingle |
Application of deep learning for high-resolution flood mapping in urban watersheds Lago, Cesar Ambrogi Ferreira do aprendizado profundo artificial neural networks chuva no grid deep learning high-resolution flood mapping mapeamento de inundações de alta resolução modelos de inundações rápidos rain-on-grid rapid flood models redes neurais artificiais |
title_short |
Application of deep learning for high-resolution flood mapping in urban watersheds |
title_full |
Application of deep learning for high-resolution flood mapping in urban watersheds |
title_fullStr |
Application of deep learning for high-resolution flood mapping in urban watersheds |
title_full_unstemmed |
Application of deep learning for high-resolution flood mapping in urban watersheds |
title_sort |
Application of deep learning for high-resolution flood mapping in urban watersheds |
author |
Lago, Cesar Ambrogi Ferreira do |
author_facet |
Lago, Cesar Ambrogi Ferreira do |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mendiondo, Eduardo Mario |
dc.contributor.author.fl_str_mv |
Lago, Cesar Ambrogi Ferreira do |
dc.subject.por.fl_str_mv |
aprendizado profundo artificial neural networks chuva no grid deep learning high-resolution flood mapping mapeamento de inundações de alta resolução modelos de inundações rápidos rain-on-grid rapid flood models redes neurais artificiais |
topic |
aprendizado profundo artificial neural networks chuva no grid deep learning high-resolution flood mapping mapeamento de inundações de alta resolução modelos de inundações rápidos rain-on-grid rapid flood models redes neurais artificiais |
description |
Flood events significantly threaten urban environments, causing substantial economic damage and loss of life. Accurate prediction and mapping of these events are crucial for effective mitigation strategies. However, current hydrodynamic models used for flood prediction are expensive to build and often impractical for real-time applications or simulations on large domains due to long computational times. This dissertation explores the utility of Deep Learning (DL) models as a viable alternative for flood prediction and floodplain mapping, addressing the evident gap in current flood modeling practices. The research implements a three-fold methodology across three chapters, focusing on developing and applying ANNs for flood prediction. Chapters 1 and 2 use a conditional generative adversarial network developed for rapid pluvial flood predictions (cGAN-Flood). Chapter 1 demonstrates a novel DL application – improving flood mapping resolution from existing coarse hydrodynamic models using cGAN-Flood. Chapter 2 assesses the performance of cGAN-Flood, in distinct topological settings, specifically catchments in Sao Paulo, compared to its original training in San Antonio, Texas. Lastly, Chapter 3 outlines the creation of a novel model that predicts pluvial flood maps using ANN, requiring only Digital Elevation Models (DEM) and inflow inputs. General results across the chapters show the promising efficacy of ANNs and DL models in flood prediction and floodplain mapping. ANNs demonstrated the ability to emulate hydrodynamic models with high precision, while cGAN-Flood\'s application showed satisfactory predictive capabilities even in geographically distinct and topologically different regions. The newly proposed model in Chapter 3 compared favorably against FEMA floodplain maps, despite the simplicity of its training data. In conclusion, the research demonstrates that DL models, with further enhancements and training, can transform floodplain mapping and prediction, supporting faster simulations and extending applicability to different locations without retraining. This research underscores the potential of these models in bridging the gaps in current flood modeling practices, which is particularly significant for real-time flood prediction and the development of mitigation strategies, especially in developing regions where resources may be scarce or in larger domains. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18138/tde-18042024-113247/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257097636413440 |