Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/ |
Resumo: | Gene regulation has been studied extensively, however the complexity of the regulatory mechanisms still remains unknown. Understanding how gene regulation occurs is important not only to better understand the complexity of an organism but to postulate new rules, characterize new biological parts and then allow new design of biological circuits, for example. A possible strategy to unravel the mechanisms of action and complexity of bacterial promoters would be to combine the knowledge of gene regulation with the use of approaches from synthetic biology and bioinformatics, which, in turn, allow to design and build new functions in biological systems. Progress in synthetic biology is often made possible by powerful bioinformatics tools that allow the integration of the design, construction and testing stages of the biological engineering cycle. Consequently, the development of new bioinformatics tools is useful and important for scientists working on the design, development and testing of parts to extend or modify the behavior of organisms and design them to perform new tasks. In this context, the present thesis described (i) the existence of emergent properties in complex synthetic promoters in Escherichia coli, which could be extrapolated to naturally occurring regulatory systems and would significantly impact the engineering of synthetic biological circuits in bacteria. Taken together, these data demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications; (ii) the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e. Aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of these two proteins. As a result, a collection of engineered transcription factors (TFs) was generated with enhanced response to a well characterized and largely innocuous molecule with a potential for eliciting heterologous expression of bacterial genes in animal carriers; (iii) the complexity of transcription factors in environmental communities. We created one bacterial transcription factor database (BacTFDB) that was used to train a deep learning model to predict novel TFs and their families in metagenomics and metranscriptomics samples (PredicTF). PredicTF provides the first tool to profile TFs in yet-to be cultured bacteria and it opens the potential to evaluate regulatory networks in complex microbial communities. PredicTF is a flexible, open source pipeline able to predict and annotate TFs in genomes and metagenomes. PredicTF is avaliable at https://github.com/mdsufz/PredicTF. |
id |
USP_bd3195907c2d6ccb1d5d757694ce1ea8 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08022021-151242 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approachesDesvendando as relações arquitetura/função de promotores bacterianos complexos utilizando abordagens de biologia sintéticaComplex promotersDesign de circuitosDesign of circuitsEngenharia de proteínasFatores de transcriçãoGene regulationMachine learningMachine learningPromotores complexosProtein engineeringRegulação gênicaTranscription factorsGene regulation has been studied extensively, however the complexity of the regulatory mechanisms still remains unknown. Understanding how gene regulation occurs is important not only to better understand the complexity of an organism but to postulate new rules, characterize new biological parts and then allow new design of biological circuits, for example. A possible strategy to unravel the mechanisms of action and complexity of bacterial promoters would be to combine the knowledge of gene regulation with the use of approaches from synthetic biology and bioinformatics, which, in turn, allow to design and build new functions in biological systems. Progress in synthetic biology is often made possible by powerful bioinformatics tools that allow the integration of the design, construction and testing stages of the biological engineering cycle. Consequently, the development of new bioinformatics tools is useful and important for scientists working on the design, development and testing of parts to extend or modify the behavior of organisms and design them to perform new tasks. In this context, the present thesis described (i) the existence of emergent properties in complex synthetic promoters in Escherichia coli, which could be extrapolated to naturally occurring regulatory systems and would significantly impact the engineering of synthetic biological circuits in bacteria. Taken together, these data demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications; (ii) the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e. Aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of these two proteins. As a result, a collection of engineered transcription factors (TFs) was generated with enhanced response to a well characterized and largely innocuous molecule with a potential for eliciting heterologous expression of bacterial genes in animal carriers; (iii) the complexity of transcription factors in environmental communities. We created one bacterial transcription factor database (BacTFDB) that was used to train a deep learning model to predict novel TFs and their families in metagenomics and metranscriptomics samples (PredicTF). PredicTF provides the first tool to profile TFs in yet-to be cultured bacteria and it opens the potential to evaluate regulatory networks in complex microbial communities. PredicTF is a flexible, open source pipeline able to predict and annotate TFs in genomes and metagenomes. PredicTF is avaliable at https://github.com/mdsufz/PredicTF.A regulação gênica tem sido estudada extensivamente, no entanto, a complexidade dos mecanismos regulatórios ainda permanece desconhecida. Entender os mecanismos da regulação gênica é importante não apenas para desvendar a complexidade de um organismo, mas para postular novas regras, caracterizar novas partes biológicas e então permitir novos designs de circuitos biológicos, por exemplo. Uma possível estratégia para desvendar os mecanismos de ação e complexidade dos promotores bacterianos seria combinar o conhecimento da regulação gênica com o uso de abordagens da biologia sintética e da bioinformática, que, por sua vez, permitem projetar e construir novas funções em sistemas biológicos. O progresso na biologia sintética é frequentemente possibilitado por poderosas ferramentas de bioinformática que permitem a integração das fases de design, construção e teste do ciclo de engenharia biológica. Consequentemente, o desenvolvimento de novas ferramentas de bioinformática é útil e importante para os cientistas que trabalham para estender ou modificar o comportamento dos organismos e projetá-los para realizar novas tarefas. Nesse contexto, a presente tese descreveu (i) a existência de propriedades emergentes em promotores sintéticos complexos em Escherichia coli, que poderiam ser extrapoladas para sistemas regulatórios de ocorrência natural e impactariam significativamente a engenharia de circuitos biológicos sintéticos em bactérias. Em resumo, esses dados demonstram como pequenas mudanças na arquitetura dos promotores bacterianos podem resultar em mudanças drásticas na lógica regulatória final do sistema, com implicações importantes na compreensão de promotores complexos naturais em bactérias e sua engenharia para novas aplicações; (ii) o mecanismo de reconhecimento do indutor de dois reguladores AraC/XylS de Pseudomonas putida (BenR e XylS) para a criação de um novo sistema de expressão responsivo ao ácido acetil salicílico (aspirina). Usando homologia de proteínas e docking molecular com o indutor benzoato e um conjunto de análogos químicos, identificamos o sítio de ligação conservado dessas duas proteínas. Como resultado, uma coleção de fatores de transcrição (TFs) engenheirados foram gerados com respostas aprimoradas a uma molécula bem caracterizada e amplamente inócua com um potencial para induzir a expressão heteróloga de genes bacterianos em animais; (iii) a complexidade dos fatores de transcrição em comunidades microbianas ambientais. Criamos um banco de dados de fatores de transcrição bacteriano (BacTFDB) que foi usado para treinar um modelo de Machine Learning para prever novos TFs e suas famílias em amostras metagenômicas e metranscriptômicas (PredicTF). PredicTF fornece a primeira ferramenta para traçar o perfil de TFs em bactérias ainda a serem cultivadas e abre o potencial para avaliar redes regulatórias em comunidades microbianas complexas. PredicTF é um pipeline de código aberto flexível capaz de prever e anotar TFs em genomas e metagenomas. PredicTF está disponível em https://github.com/mdsufz/PredicTF.Biblioteca Digitais de Teses e Dissertações da USPRocha, Rafael SilvaMonteiro, Lummy Maria Oliveira2020-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-03-24T22:53:05Zoai:teses.usp.br:tde-08022021-151242Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-03-24T22:53:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches Desvendando as relações arquitetura/função de promotores bacterianos complexos utilizando abordagens de biologia sintética |
title |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches |
spellingShingle |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches Monteiro, Lummy Maria Oliveira Complex promoters Design de circuitos Design of circuits Engenharia de proteínas Fatores de transcrição Gene regulation Machine learning Machine learning Promotores complexos Protein engineering Regulação gênica Transcription factors |
title_short |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches |
title_full |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches |
title_fullStr |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches |
title_full_unstemmed |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches |
title_sort |
Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches |
author |
Monteiro, Lummy Maria Oliveira |
author_facet |
Monteiro, Lummy Maria Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rocha, Rafael Silva |
dc.contributor.author.fl_str_mv |
Monteiro, Lummy Maria Oliveira |
dc.subject.por.fl_str_mv |
Complex promoters Design de circuitos Design of circuits Engenharia de proteínas Fatores de transcrição Gene regulation Machine learning Machine learning Promotores complexos Protein engineering Regulação gênica Transcription factors |
topic |
Complex promoters Design de circuitos Design of circuits Engenharia de proteínas Fatores de transcrição Gene regulation Machine learning Machine learning Promotores complexos Protein engineering Regulação gênica Transcription factors |
description |
Gene regulation has been studied extensively, however the complexity of the regulatory mechanisms still remains unknown. Understanding how gene regulation occurs is important not only to better understand the complexity of an organism but to postulate new rules, characterize new biological parts and then allow new design of biological circuits, for example. A possible strategy to unravel the mechanisms of action and complexity of bacterial promoters would be to combine the knowledge of gene regulation with the use of approaches from synthetic biology and bioinformatics, which, in turn, allow to design and build new functions in biological systems. Progress in synthetic biology is often made possible by powerful bioinformatics tools that allow the integration of the design, construction and testing stages of the biological engineering cycle. Consequently, the development of new bioinformatics tools is useful and important for scientists working on the design, development and testing of parts to extend or modify the behavior of organisms and design them to perform new tasks. In this context, the present thesis described (i) the existence of emergent properties in complex synthetic promoters in Escherichia coli, which could be extrapolated to naturally occurring regulatory systems and would significantly impact the engineering of synthetic biological circuits in bacteria. Taken together, these data demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications; (ii) the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e. Aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of these two proteins. As a result, a collection of engineered transcription factors (TFs) was generated with enhanced response to a well characterized and largely innocuous molecule with a potential for eliciting heterologous expression of bacterial genes in animal carriers; (iii) the complexity of transcription factors in environmental communities. We created one bacterial transcription factor database (BacTFDB) that was used to train a deep learning model to predict novel TFs and their families in metagenomics and metranscriptomics samples (PredicTF). PredicTF provides the first tool to profile TFs in yet-to be cultured bacteria and it opens the potential to evaluate regulatory networks in complex microbial communities. PredicTF is a flexible, open source pipeline able to predict and annotate TFs in genomes and metagenomes. PredicTF is avaliable at https://github.com/mdsufz/PredicTF. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/ |
url |
https://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256792986288128 |