Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches

Detalhes bibliográficos
Autor(a) principal: Monteiro, Lummy Maria Oliveira
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/
Resumo: Gene regulation has been studied extensively, however the complexity of the regulatory mechanisms still remains unknown. Understanding how gene regulation occurs is important not only to better understand the complexity of an organism but to postulate new rules, characterize new biological parts and then allow new design of biological circuits, for example. A possible strategy to unravel the mechanisms of action and complexity of bacterial promoters would be to combine the knowledge of gene regulation with the use of approaches from synthetic biology and bioinformatics, which, in turn, allow to design and build new functions in biological systems. Progress in synthetic biology is often made possible by powerful bioinformatics tools that allow the integration of the design, construction and testing stages of the biological engineering cycle. Consequently, the development of new bioinformatics tools is useful and important for scientists working on the design, development and testing of parts to extend or modify the behavior of organisms and design them to perform new tasks. In this context, the present thesis described (i) the existence of emergent properties in complex synthetic promoters in Escherichia coli, which could be extrapolated to naturally occurring regulatory systems and would significantly impact the engineering of synthetic biological circuits in bacteria. Taken together, these data demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications; (ii) the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e. Aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of these two proteins. As a result, a collection of engineered transcription factors (TFs) was generated with enhanced response to a well characterized and largely innocuous molecule with a potential for eliciting heterologous expression of bacterial genes in animal carriers; (iii) the complexity of transcription factors in environmental communities. We created one bacterial transcription factor database (BacTFDB) that was used to train a deep learning model to predict novel TFs and their families in metagenomics and metranscriptomics samples (PredicTF). PredicTF provides the first tool to profile TFs in yet-to be cultured bacteria and it opens the potential to evaluate regulatory networks in complex microbial communities. PredicTF is a flexible, open source pipeline able to predict and annotate TFs in genomes and metagenomes. PredicTF is avaliable at https://github.com/mdsufz/PredicTF.
id USP_bd3195907c2d6ccb1d5d757694ce1ea8
oai_identifier_str oai:teses.usp.br:tde-08022021-151242
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approachesDesvendando as relações arquitetura/função de promotores bacterianos complexos utilizando abordagens de biologia sintéticaComplex promotersDesign de circuitosDesign of circuitsEngenharia de proteínasFatores de transcriçãoGene regulationMachine learningMachine learningPromotores complexosProtein engineeringRegulação gênicaTranscription factorsGene regulation has been studied extensively, however the complexity of the regulatory mechanisms still remains unknown. Understanding how gene regulation occurs is important not only to better understand the complexity of an organism but to postulate new rules, characterize new biological parts and then allow new design of biological circuits, for example. A possible strategy to unravel the mechanisms of action and complexity of bacterial promoters would be to combine the knowledge of gene regulation with the use of approaches from synthetic biology and bioinformatics, which, in turn, allow to design and build new functions in biological systems. Progress in synthetic biology is often made possible by powerful bioinformatics tools that allow the integration of the design, construction and testing stages of the biological engineering cycle. Consequently, the development of new bioinformatics tools is useful and important for scientists working on the design, development and testing of parts to extend or modify the behavior of organisms and design them to perform new tasks. In this context, the present thesis described (i) the existence of emergent properties in complex synthetic promoters in Escherichia coli, which could be extrapolated to naturally occurring regulatory systems and would significantly impact the engineering of synthetic biological circuits in bacteria. Taken together, these data demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications; (ii) the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e. Aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of these two proteins. As a result, a collection of engineered transcription factors (TFs) was generated with enhanced response to a well characterized and largely innocuous molecule with a potential for eliciting heterologous expression of bacterial genes in animal carriers; (iii) the complexity of transcription factors in environmental communities. We created one bacterial transcription factor database (BacTFDB) that was used to train a deep learning model to predict novel TFs and their families in metagenomics and metranscriptomics samples (PredicTF). PredicTF provides the first tool to profile TFs in yet-to be cultured bacteria and it opens the potential to evaluate regulatory networks in complex microbial communities. PredicTF is a flexible, open source pipeline able to predict and annotate TFs in genomes and metagenomes. PredicTF is avaliable at https://github.com/mdsufz/PredicTF.A regulação gênica tem sido estudada extensivamente, no entanto, a complexidade dos mecanismos regulatórios ainda permanece desconhecida. Entender os mecanismos da regulação gênica é importante não apenas para desvendar a complexidade de um organismo, mas para postular novas regras, caracterizar novas partes biológicas e então permitir novos designs de circuitos biológicos, por exemplo. Uma possível estratégia para desvendar os mecanismos de ação e complexidade dos promotores bacterianos seria combinar o conhecimento da regulação gênica com o uso de abordagens da biologia sintética e da bioinformática, que, por sua vez, permitem projetar e construir novas funções em sistemas biológicos. O progresso na biologia sintética é frequentemente possibilitado por poderosas ferramentas de bioinformática que permitem a integração das fases de design, construção e teste do ciclo de engenharia biológica. Consequentemente, o desenvolvimento de novas ferramentas de bioinformática é útil e importante para os cientistas que trabalham para estender ou modificar o comportamento dos organismos e projetá-los para realizar novas tarefas. Nesse contexto, a presente tese descreveu (i) a existência de propriedades emergentes em promotores sintéticos complexos em Escherichia coli, que poderiam ser extrapoladas para sistemas regulatórios de ocorrência natural e impactariam significativamente a engenharia de circuitos biológicos sintéticos em bactérias. Em resumo, esses dados demonstram como pequenas mudanças na arquitetura dos promotores bacterianos podem resultar em mudanças drásticas na lógica regulatória final do sistema, com implicações importantes na compreensão de promotores complexos naturais em bactérias e sua engenharia para novas aplicações; (ii) o mecanismo de reconhecimento do indutor de dois reguladores AraC/XylS de Pseudomonas putida (BenR e XylS) para a criação de um novo sistema de expressão responsivo ao ácido acetil salicílico (aspirina). Usando homologia de proteínas e docking molecular com o indutor benzoato e um conjunto de análogos químicos, identificamos o sítio de ligação conservado dessas duas proteínas. Como resultado, uma coleção de fatores de transcrição (TFs) engenheirados foram gerados com respostas aprimoradas a uma molécula bem caracterizada e amplamente inócua com um potencial para induzir a expressão heteróloga de genes bacterianos em animais; (iii) a complexidade dos fatores de transcrição em comunidades microbianas ambientais. Criamos um banco de dados de fatores de transcrição bacteriano (BacTFDB) que foi usado para treinar um modelo de Machine Learning para prever novos TFs e suas famílias em amostras metagenômicas e metranscriptômicas (PredicTF). PredicTF fornece a primeira ferramenta para traçar o perfil de TFs em bactérias ainda a serem cultivadas e abre o potencial para avaliar redes regulatórias em comunidades microbianas complexas. PredicTF é um pipeline de código aberto flexível capaz de prever e anotar TFs em genomas e metagenomas. PredicTF está disponível em https://github.com/mdsufz/PredicTF.Biblioteca Digitais de Teses e Dissertações da USPRocha, Rafael SilvaMonteiro, Lummy Maria Oliveira2020-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-03-24T22:53:05Zoai:teses.usp.br:tde-08022021-151242Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-03-24T22:53:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
Desvendando as relações arquitetura/função de promotores bacterianos complexos utilizando abordagens de biologia sintética
title Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
spellingShingle Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
Monteiro, Lummy Maria Oliveira
Complex promoters
Design de circuitos
Design of circuits
Engenharia de proteínas
Fatores de transcrição
Gene regulation
Machine learning
Machine learning
Promotores complexos
Protein engineering
Regulação gênica
Transcription factors
title_short Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
title_full Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
title_fullStr Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
title_full_unstemmed Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
title_sort Deciphering the architecture/function relationship in complex bacterial promoters through Synthetic Biology approaches
author Monteiro, Lummy Maria Oliveira
author_facet Monteiro, Lummy Maria Oliveira
author_role author
dc.contributor.none.fl_str_mv Rocha, Rafael Silva
dc.contributor.author.fl_str_mv Monteiro, Lummy Maria Oliveira
dc.subject.por.fl_str_mv Complex promoters
Design de circuitos
Design of circuits
Engenharia de proteínas
Fatores de transcrição
Gene regulation
Machine learning
Machine learning
Promotores complexos
Protein engineering
Regulação gênica
Transcription factors
topic Complex promoters
Design de circuitos
Design of circuits
Engenharia de proteínas
Fatores de transcrição
Gene regulation
Machine learning
Machine learning
Promotores complexos
Protein engineering
Regulação gênica
Transcription factors
description Gene regulation has been studied extensively, however the complexity of the regulatory mechanisms still remains unknown. Understanding how gene regulation occurs is important not only to better understand the complexity of an organism but to postulate new rules, characterize new biological parts and then allow new design of biological circuits, for example. A possible strategy to unravel the mechanisms of action and complexity of bacterial promoters would be to combine the knowledge of gene regulation with the use of approaches from synthetic biology and bioinformatics, which, in turn, allow to design and build new functions in biological systems. Progress in synthetic biology is often made possible by powerful bioinformatics tools that allow the integration of the design, construction and testing stages of the biological engineering cycle. Consequently, the development of new bioinformatics tools is useful and important for scientists working on the design, development and testing of parts to extend or modify the behavior of organisms and design them to perform new tasks. In this context, the present thesis described (i) the existence of emergent properties in complex synthetic promoters in Escherichia coli, which could be extrapolated to naturally occurring regulatory systems and would significantly impact the engineering of synthetic biological circuits in bacteria. Taken together, these data demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications; (ii) the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e. Aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of these two proteins. As a result, a collection of engineered transcription factors (TFs) was generated with enhanced response to a well characterized and largely innocuous molecule with a potential for eliciting heterologous expression of bacterial genes in animal carriers; (iii) the complexity of transcription factors in environmental communities. We created one bacterial transcription factor database (BacTFDB) that was used to train a deep learning model to predict novel TFs and their families in metagenomics and metranscriptomics samples (PredicTF). PredicTF provides the first tool to profile TFs in yet-to be cultured bacteria and it opens the potential to evaluate regulatory networks in complex microbial communities. PredicTF is a flexible, open source pipeline able to predict and annotate TFs in genomes and metagenomes. PredicTF is avaliable at https://github.com/mdsufz/PredicTF.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/
url https://www.teses.usp.br/teses/disponiveis/17/17131/tde-08022021-151242/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256792986288128