Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas

Detalhes bibliográficos
Autor(a) principal: Silva, Ricardo Roberto da
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/17/17135/tde-21052014-140921/
Resumo: A metabolômica é uma ciência emergente na era pós-genômica que almeja a análise abrangente de pequenas moléculas orgânicas em sistemas biológicos. Técnicas de cromatografia líquida acoplada a espectrometria de massas (LC-MS) figuram como as abordagens de amostragem mais difundidas. A extração e detecção simultânea de metabólitos por LC-MS produz conjuntos de dados complexos que requerem uma série de etapas de pré-processamento para que a informação possa ser extraída com eficiência e precisão. Para que as abordagens de perfil metabólico não direcionado possam ser efetivamente relacionadas às alterações de interesse no metabolismo, é estritamente necessário que os metabólitos amostrados sejam anotados com confiabilidade e que a sua inter-relação seja interpretada sob a pressuposição de uma amostra conectada do metabolismo. Diante do desafio apresentado, a presente tese teve por objetivo desenvolver um arcabouço de software, que tem como componente central um método probabilístico de anotação de metabólitos que permite a incorporação de fontes independentes de informações espectrais e conhecimento prévio acerca do metabolismo. Após a classificação probabilística, um novo método para representar a distribuição de probabilidades a posteriori em forma de grafo foi proposto. Uma biblioteca de métodos para o ambiente R, denominada ProbMetab (Probilistic Metabolomics), foi criada e disponibilizada de forma aberta e gratuita. Utilizando o software ProbMetab para analisar um conjunto de dados benchmark com identidades dos compostos conhecidas de antemão, demonstramos que até 90% das identidades corretas dos metabólitos estão presentes entre as três maiores probabilidades. Portanto, pode-se enfatizar a eficiência da disponibilização da distribuição de probabilidades a posteriori em lugar da classificação simplista usualmente adotada na área de metabolômica, em que se usa apenas o candidato de maior probabilidade. Numa aplicação à dados reais, mudanças em uma via metabólica reconhecidamente relacionada a estresses abióticos em plantas (Biossíntese de Flavona e Flavonol) foram automaticamente detectadas em dados de cana-de-açúcar, demonstrando a importância de uma visualização centrada na distribuição a posteriori da rede de anotações dos metabólitos.
id USP_bdfb1c1d1b2bf1c0b94ab59afa52e357
oai_identifier_str oai:teses.usp.br:tde-21052014-140921
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massasProbabilistic annotation of metabolite profiles obtained by liquid chromatography coupled to mass spectrometryBayesian StatisticsBioinformáticaBioinformaticsEspectrometria de massasEstatística BayesianaMass spectrometryMetabolômicaMetabolomicsA metabolômica é uma ciência emergente na era pós-genômica que almeja a análise abrangente de pequenas moléculas orgânicas em sistemas biológicos. Técnicas de cromatografia líquida acoplada a espectrometria de massas (LC-MS) figuram como as abordagens de amostragem mais difundidas. A extração e detecção simultânea de metabólitos por LC-MS produz conjuntos de dados complexos que requerem uma série de etapas de pré-processamento para que a informação possa ser extraída com eficiência e precisão. Para que as abordagens de perfil metabólico não direcionado possam ser efetivamente relacionadas às alterações de interesse no metabolismo, é estritamente necessário que os metabólitos amostrados sejam anotados com confiabilidade e que a sua inter-relação seja interpretada sob a pressuposição de uma amostra conectada do metabolismo. Diante do desafio apresentado, a presente tese teve por objetivo desenvolver um arcabouço de software, que tem como componente central um método probabilístico de anotação de metabólitos que permite a incorporação de fontes independentes de informações espectrais e conhecimento prévio acerca do metabolismo. Após a classificação probabilística, um novo método para representar a distribuição de probabilidades a posteriori em forma de grafo foi proposto. Uma biblioteca de métodos para o ambiente R, denominada ProbMetab (Probilistic Metabolomics), foi criada e disponibilizada de forma aberta e gratuita. Utilizando o software ProbMetab para analisar um conjunto de dados benchmark com identidades dos compostos conhecidas de antemão, demonstramos que até 90% das identidades corretas dos metabólitos estão presentes entre as três maiores probabilidades. Portanto, pode-se enfatizar a eficiência da disponibilização da distribuição de probabilidades a posteriori em lugar da classificação simplista usualmente adotada na área de metabolômica, em que se usa apenas o candidato de maior probabilidade. Numa aplicação à dados reais, mudanças em uma via metabólica reconhecidamente relacionada a estresses abióticos em plantas (Biossíntese de Flavona e Flavonol) foram automaticamente detectadas em dados de cana-de-açúcar, demonstrando a importância de uma visualização centrada na distribuição a posteriori da rede de anotações dos metabólitos.Metabolomics is an emerging science field in the post-genomic era, which aims at a comprehensive analysis of small organic molecules in biological systems. Techniques of liquid chromatography coupled to mass spectrometry (LC-MS) figure as the most widespread approaches to metabolomics studies. The metabolite detection by LC-MS produces complex data sets, that require a series of preprocessing steps to ensure that the information can be extracted efficiently and accurately. In order to be effectively related to alterations in the metabolism of interest, is absolutely necessary that the metabolites sampled by untargeted metabolic profiling approaches are annotated with reliability and that their relationship are interpreted under the assumption of a connected metabolism sample. Faced with the presented challenge, this thesis developed a software framework, which has as its central component a probabilistic method for metabolite annotation that allows the incorporation of independent sources of spectral information and prior knowledge about metabolism. After the probabilistic classification, a new method to represent the a posteriori probability distribution in the form of a graph has been proposed. A library of methods for R environment, called ProbMetab (Probilistic Metabolomics), was created and made available as an open source software. Using the ProbMetab software to analyze a set of benchmark data with compound identities known beforehand, we demonstrated that up to 90% of the correct metabolite identities were present among the top-three higher probabilities, emphasizing the efficiency of a posteriori probability distribution display, in place of a simplistic classification with only the most probable candidate, usually adopted in the field of metabolomics. In an application to real data, changes in a known metabolic pathway related to abiotic stresses in plants (Biosynthesis of Flavone and Flavonol) were automatically detected on sugar cane data, demonstrating the importance of a view centered on the posterior distribution of metabolite annotation network.Biblioteca Digitais de Teses e Dissertações da USPVencio, Ricardo Zorzetto NicolielloSilva, Ricardo Roberto da2014-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17135/tde-21052014-140921/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:55Zoai:teses.usp.br:tde-21052014-140921Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:55Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
Probabilistic annotation of metabolite profiles obtained by liquid chromatography coupled to mass spectrometry
title Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
spellingShingle Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
Silva, Ricardo Roberto da
Bayesian Statistics
Bioinformática
Bioinformatics
Espectrometria de massas
Estatística Bayesiana
Mass spectrometry
Metabolômica
Metabolomics
title_short Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
title_full Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
title_fullStr Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
title_full_unstemmed Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
title_sort Anotação probabilística de perfis de metabólitos obtidos por cromatografia líquida acoplada a espectrometria de massas
author Silva, Ricardo Roberto da
author_facet Silva, Ricardo Roberto da
author_role author
dc.contributor.none.fl_str_mv Vencio, Ricardo Zorzetto Nicoliello
dc.contributor.author.fl_str_mv Silva, Ricardo Roberto da
dc.subject.por.fl_str_mv Bayesian Statistics
Bioinformática
Bioinformatics
Espectrometria de massas
Estatística Bayesiana
Mass spectrometry
Metabolômica
Metabolomics
topic Bayesian Statistics
Bioinformática
Bioinformatics
Espectrometria de massas
Estatística Bayesiana
Mass spectrometry
Metabolômica
Metabolomics
description A metabolômica é uma ciência emergente na era pós-genômica que almeja a análise abrangente de pequenas moléculas orgânicas em sistemas biológicos. Técnicas de cromatografia líquida acoplada a espectrometria de massas (LC-MS) figuram como as abordagens de amostragem mais difundidas. A extração e detecção simultânea de metabólitos por LC-MS produz conjuntos de dados complexos que requerem uma série de etapas de pré-processamento para que a informação possa ser extraída com eficiência e precisão. Para que as abordagens de perfil metabólico não direcionado possam ser efetivamente relacionadas às alterações de interesse no metabolismo, é estritamente necessário que os metabólitos amostrados sejam anotados com confiabilidade e que a sua inter-relação seja interpretada sob a pressuposição de uma amostra conectada do metabolismo. Diante do desafio apresentado, a presente tese teve por objetivo desenvolver um arcabouço de software, que tem como componente central um método probabilístico de anotação de metabólitos que permite a incorporação de fontes independentes de informações espectrais e conhecimento prévio acerca do metabolismo. Após a classificação probabilística, um novo método para representar a distribuição de probabilidades a posteriori em forma de grafo foi proposto. Uma biblioteca de métodos para o ambiente R, denominada ProbMetab (Probilistic Metabolomics), foi criada e disponibilizada de forma aberta e gratuita. Utilizando o software ProbMetab para analisar um conjunto de dados benchmark com identidades dos compostos conhecidas de antemão, demonstramos que até 90% das identidades corretas dos metabólitos estão presentes entre as três maiores probabilidades. Portanto, pode-se enfatizar a eficiência da disponibilização da distribuição de probabilidades a posteriori em lugar da classificação simplista usualmente adotada na área de metabolômica, em que se usa apenas o candidato de maior probabilidade. Numa aplicação à dados reais, mudanças em uma via metabólica reconhecidamente relacionada a estresses abióticos em plantas (Biossíntese de Flavona e Flavonol) foram automaticamente detectadas em dados de cana-de-açúcar, demonstrando a importância de uma visualização centrada na distribuição a posteriori da rede de anotações dos metabólitos.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/17/17135/tde-21052014-140921/
url http://www.teses.usp.br/teses/disponiveis/17/17135/tde-21052014-140921/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257239465754624