Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana

Detalhes bibliográficos
Autor(a) principal: Toledo, Elisabeth Regina de
Data de Publicação: 2006
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-14112006-134805/
Resumo: A produção de grãos e outros caracteres de importância econômica para a cultura do milho, tais como a altura da planta, o comprimento e o diâmetro da espiga, apresentam herança poligênica, o que dificulta a obtenção de informações sobre as bases genéticas envolvidas na variação desses caracteres. Associações entre marcadores e QTLs foram analisadas através dos métodos de mapeamento por intervalo composto (CIM) e mapeamento por intervalo Bayesiano (BIM). A partir de um conjunto de dados de produção de grãos, referentes à avaliação de 256 progênies de milho genotipadas para 139 marcadores moleculares codominantes, verificou-se que as metodologias apresentadas permitiram classificar marcas associadas a QTLs. Através do procedimento CIM, associações entre marcadores e QTLs foram consideradas significativas quando o valor da estatística de razão de verossimilhança (LR) ao longo do cromossomo atingiu o valor máximo dentre os que ultrapassaram o limite crítico LR = 11; 5 no intervalo considerado. Dez QTLs foram mapeados distribuídos em três cromossomos. Juntos, explicaram 19,86% da variância genética. Os tipos de interação alélica predominantes foram de dominância parcial (quatro QTLs) e dominância completa (três QTLs). O grau médio de dominância calculado foi de 1,12, indicando grau médio de dominância completa. Grande parte dos alelos favoráveis ao caráter foram provenientes da linhagem parental L0202D, que apresentou mais elevada produção de grãos. Adotando-se a abordagem Bayesiana, foram implementados métodos de amostragem através de cadeias de Markov (MCMC), para obtenção de uma amostra da distribuição a posteriori dos parâmetros de interesse, incorporando as crenças e incertezas a priori. Resumos sobre as localizações dos QTLs e seus efeitos aditivo e de dominância foram obtidos. Métodos MCMC com saltos reversíveis (RJMCMC) foram utilizados para a análise Bayesiana e Fator calculado de Bayes para estimar o número de QTLs. Através do método BIM associações entre marcadores e QTLs foram consideradas significativas em quatro cromossomos, com um total de cinco QTLs mapeados. Juntos, esses QTLs explicaram 13,06% da variância genética. A maior parte dos alelos favoráveis ao caráter também foram provenientes da linhagem parental L02-02D.
id USP_be2b474504c1973695e123523e5712ed
oai_identifier_str oai:teses.usp.br:tde-14112006-134805
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Mapeamento de QTLs utilizando as abordagens Clássica e BayesianaMapping QTLs: Classical and Bayesian approachesApplied StatisticsBayesian interval mappingComposite interval mappingEstatística aplicadaGenetic mappingGrainsGrãosLikelihoodMapeamento genéticoMarcador molecularMilhoQuantitative trait lociReversible jump MCMCVerossimilhançaYeldA produção de grãos e outros caracteres de importância econômica para a cultura do milho, tais como a altura da planta, o comprimento e o diâmetro da espiga, apresentam herança poligênica, o que dificulta a obtenção de informações sobre as bases genéticas envolvidas na variação desses caracteres. Associações entre marcadores e QTLs foram analisadas através dos métodos de mapeamento por intervalo composto (CIM) e mapeamento por intervalo Bayesiano (BIM). A partir de um conjunto de dados de produção de grãos, referentes à avaliação de 256 progênies de milho genotipadas para 139 marcadores moleculares codominantes, verificou-se que as metodologias apresentadas permitiram classificar marcas associadas a QTLs. Através do procedimento CIM, associações entre marcadores e QTLs foram consideradas significativas quando o valor da estatística de razão de verossimilhança (LR) ao longo do cromossomo atingiu o valor máximo dentre os que ultrapassaram o limite crítico LR = 11; 5 no intervalo considerado. Dez QTLs foram mapeados distribuídos em três cromossomos. Juntos, explicaram 19,86% da variância genética. Os tipos de interação alélica predominantes foram de dominância parcial (quatro QTLs) e dominância completa (três QTLs). O grau médio de dominância calculado foi de 1,12, indicando grau médio de dominância completa. Grande parte dos alelos favoráveis ao caráter foram provenientes da linhagem parental L0202D, que apresentou mais elevada produção de grãos. Adotando-se a abordagem Bayesiana, foram implementados métodos de amostragem através de cadeias de Markov (MCMC), para obtenção de uma amostra da distribuição a posteriori dos parâmetros de interesse, incorporando as crenças e incertezas a priori. Resumos sobre as localizações dos QTLs e seus efeitos aditivo e de dominância foram obtidos. Métodos MCMC com saltos reversíveis (RJMCMC) foram utilizados para a análise Bayesiana e Fator calculado de Bayes para estimar o número de QTLs. Através do método BIM associações entre marcadores e QTLs foram consideradas significativas em quatro cromossomos, com um total de cinco QTLs mapeados. Juntos, esses QTLs explicaram 13,06% da variância genética. A maior parte dos alelos favoráveis ao caráter também foram provenientes da linhagem parental L02-02D.Grain yield and other important economic traits in maize, such as plant heigth, stalk length, and stalk diameter, exhibit polygenic inheritance, making dificult information achievement about the genetic bases related to the variation of these traits. The number and sites of (QTLs) loci that control grain yield in maize have been estimated. Associations between markers and QTLs were undertaken by composite interval mapping (CIM) and Bayesian interval mapping (BIM). Based on a set of grain yield data, obtained from the evaluation of 256 maize progenies genotyped for 139 codominant molecular markers, the presented methodologies allowed classification of markers associated to QTLs.Through composite interval mapping were significant when value of likelihood ratio (LR) throughout the chromosome surpassed LR = 11; 5. Significant associations between markers and QTLs were obtained in three chromosomes, ten QTLs has been mapped, which explained 19; 86% of genetic variation. Predominant genetic action for mapped QTLs was partial dominance and (four QTLs) complete dominance (tree QTLs). Average dominance amounted to 1,12 and confirmed complete dominance for grain yield. Most alleles that contributed positively in trait came from parental strain L0202D. The latter had the highest yield rate. Adopting a Bayesian approach to inference, usually implemented via Markov chain Monte Carlo (MCMC). The output of a Bayesian analysis is a posterior distribution on the parameters, fully incorporating prior beliefs and parameter uncertainty. Reversible Jump MCMC (RJMCMC) is used in this work. Bayes Factor is used to estimate the number of QTL. Through Bayesian interval, significant associations between markers and QTLs were obtained in four chromosomes and five QTLs has been mapped, which explained 13; 06% of genetic variation. Most alleles that contributed positively in trait came from parental strain L02-02D. The latter had the highest yield rate.Biblioteca Digitais de Teses e Dissertações da USPLeandro, Roseli AparecidaToledo, Elisabeth Regina de2006-10-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-14112006-134805/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-14112006-134805Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
Mapping QTLs: Classical and Bayesian approaches
title Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
spellingShingle Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
Toledo, Elisabeth Regina de
Applied Statistics
Bayesian interval mapping
Composite interval mapping
Estatística aplicada
Genetic mapping
Grains
Grãos
Likelihood
Mapeamento genético
Marcador molecular
Milho
Quantitative trait loci
Reversible jump MCMC
Verossimilhança
Yeld
title_short Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
title_full Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
title_fullStr Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
title_full_unstemmed Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
title_sort Mapeamento de QTLs utilizando as abordagens Clássica e Bayesiana
author Toledo, Elisabeth Regina de
author_facet Toledo, Elisabeth Regina de
author_role author
dc.contributor.none.fl_str_mv Leandro, Roseli Aparecida
dc.contributor.author.fl_str_mv Toledo, Elisabeth Regina de
dc.subject.por.fl_str_mv Applied Statistics
Bayesian interval mapping
Composite interval mapping
Estatística aplicada
Genetic mapping
Grains
Grãos
Likelihood
Mapeamento genético
Marcador molecular
Milho
Quantitative trait loci
Reversible jump MCMC
Verossimilhança
Yeld
topic Applied Statistics
Bayesian interval mapping
Composite interval mapping
Estatística aplicada
Genetic mapping
Grains
Grãos
Likelihood
Mapeamento genético
Marcador molecular
Milho
Quantitative trait loci
Reversible jump MCMC
Verossimilhança
Yeld
description A produção de grãos e outros caracteres de importância econômica para a cultura do milho, tais como a altura da planta, o comprimento e o diâmetro da espiga, apresentam herança poligênica, o que dificulta a obtenção de informações sobre as bases genéticas envolvidas na variação desses caracteres. Associações entre marcadores e QTLs foram analisadas através dos métodos de mapeamento por intervalo composto (CIM) e mapeamento por intervalo Bayesiano (BIM). A partir de um conjunto de dados de produção de grãos, referentes à avaliação de 256 progênies de milho genotipadas para 139 marcadores moleculares codominantes, verificou-se que as metodologias apresentadas permitiram classificar marcas associadas a QTLs. Através do procedimento CIM, associações entre marcadores e QTLs foram consideradas significativas quando o valor da estatística de razão de verossimilhança (LR) ao longo do cromossomo atingiu o valor máximo dentre os que ultrapassaram o limite crítico LR = 11; 5 no intervalo considerado. Dez QTLs foram mapeados distribuídos em três cromossomos. Juntos, explicaram 19,86% da variância genética. Os tipos de interação alélica predominantes foram de dominância parcial (quatro QTLs) e dominância completa (três QTLs). O grau médio de dominância calculado foi de 1,12, indicando grau médio de dominância completa. Grande parte dos alelos favoráveis ao caráter foram provenientes da linhagem parental L0202D, que apresentou mais elevada produção de grãos. Adotando-se a abordagem Bayesiana, foram implementados métodos de amostragem através de cadeias de Markov (MCMC), para obtenção de uma amostra da distribuição a posteriori dos parâmetros de interesse, incorporando as crenças e incertezas a priori. Resumos sobre as localizações dos QTLs e seus efeitos aditivo e de dominância foram obtidos. Métodos MCMC com saltos reversíveis (RJMCMC) foram utilizados para a análise Bayesiana e Fator calculado de Bayes para estimar o número de QTLs. Através do método BIM associações entre marcadores e QTLs foram consideradas significativas em quatro cromossomos, com um total de cinco QTLs mapeados. Juntos, esses QTLs explicaram 13,06% da variância genética. A maior parte dos alelos favoráveis ao caráter também foram provenientes da linhagem parental L02-02D.
publishDate 2006
dc.date.none.fl_str_mv 2006-10-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-14112006-134805/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-14112006-134805/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256975835922432