Hidden symmetries in gauge theories & quasi-integrablility

Detalhes bibliográficos
Autor(a) principal: Martins, Gabriel Luchini
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-30042013-143928/
Resumo: This thesis is about some extensions of the ideas and techniques used in integrable field theories to deal with non-integrable theories. It is presented in two parts. The first part deals with gauge theories in 3 and 4 dimensional space-time; we propose what we call the integral formulation of them, which at the end give us a natural way of defining the conserved charges that are gauge invariant and do not depend on the parametrisation of space-time. The definition of gauge invariant conserved charges in non-Abelian gauge theories is an open issue in physics and we think our solution might be a first step into its full understanding. The integral formulation shows a deeper connection between different gauge theories: they share the same basic structure when written in the loop space. Moreover, in our construction the arguments leading to the conservation of the charges are dynamical and independent of the particular solution. In the second part we discuss the recently introduced concept called quasi-integrability: one observes soliton-like configurations evolving through non-integrable equations having properties similar to those expected for integrable theories. We study the case of a model which is a deformation of the non-linear Schr¨odinger equation consisting of a more general potential, connected in a way with the integrable one. The idea is to develop a mathematical approach to treat more realistic theories, which is in particular very important from the point of view of applications; the NLS model appears in many branches of physics, specially in optical fibres and Bose-Einstein condensation. The problem was treated analytically and numerically, and the results are interesting. Indeed, due to the fact that the model is not integrable one does not find an infinite number of conserved charges but, instead, a set of infinitely many charges that are asymptotically conserved, i.e., when two solitons undergo a scattering process the charges they carry before the collision change, but after the collision their values are recovered.
id USP_bebe2b4a71f52b9178e4d379f61081ee
oai_identifier_str oai:teses.usp.br:tde-30042013-143928
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Hidden symmetries in gauge theories & quasi-integrablilitySimetrias escondidas em teorias de calibre & quasi-integrabilidadeCargas conservadasEspaço de laçosFormulação de curvature nulaSimetrias escondidasSolitonsThis thesis is about some extensions of the ideas and techniques used in integrable field theories to deal with non-integrable theories. It is presented in two parts. The first part deals with gauge theories in 3 and 4 dimensional space-time; we propose what we call the integral formulation of them, which at the end give us a natural way of defining the conserved charges that are gauge invariant and do not depend on the parametrisation of space-time. The definition of gauge invariant conserved charges in non-Abelian gauge theories is an open issue in physics and we think our solution might be a first step into its full understanding. The integral formulation shows a deeper connection between different gauge theories: they share the same basic structure when written in the loop space. Moreover, in our construction the arguments leading to the conservation of the charges are dynamical and independent of the particular solution. In the second part we discuss the recently introduced concept called quasi-integrability: one observes soliton-like configurations evolving through non-integrable equations having properties similar to those expected for integrable theories. We study the case of a model which is a deformation of the non-linear Schr¨odinger equation consisting of a more general potential, connected in a way with the integrable one. The idea is to develop a mathematical approach to treat more realistic theories, which is in particular very important from the point of view of applications; the NLS model appears in many branches of physics, specially in optical fibres and Bose-Einstein condensation. The problem was treated analytically and numerically, and the results are interesting. Indeed, due to the fact that the model is not integrable one does not find an infinite number of conserved charges but, instead, a set of infinitely many charges that are asymptotically conserved, i.e., when two solitons undergo a scattering process the charges they carry before the collision change, but after the collision their values are recovered.Essa tese discute algumas extensões de ideias e técnicas usadas em teorias de campos integráveis para tratar teorias que não são integráveis. Sua apresentação é feita em duas partes. A primeira tem como tema teorias de calibre em 3 e 4 dimensões; propomos o que chamamos de equação integral para uma tal teoria, o que nos permite de maneira natural a construção de suas cargas invariantes de calibre, e independentes da parametrização do espaço-tempo. A definição de cargas conservadas in variantes de calibre em teorias não-Abelianas ainda é um assunto em aberto e acreditamos que a nossa solução pode ser um primeiro passo em seu entendimento. A formulação integral mostra uma conexão profunda entre diferentes teorias de calibre: elas compartilham da mesma estrutura básica quando formuladas no espaço dos laços. Mais ainda, em nossa construção os argumentos que levam `a conservação das cargas são dinâmicos e independentes de qualquer solução particular. Na segunda parte discutimos o recentemente introduzido conceito de quasi-integrabilidade: em (1 + 1) dimensões existem modelos não integráveis que admitem soluções solitonicas com propriedades similares `aquelas de teorias integráveis. Estudamos o caso de um modelo que consiste de uma deformação (não-integrável) da equação de Schrödinger não-linear (NLS), proveniente de um potencial mais geral, obtido a partir do caso integrável. O que se busca é desenvolver uma abordagem matemática sistemática para tratar teorias mais realistas (e portanto não integráveis), algo bastante relevante do ponto de vista de aplicações; o modelo NLS aparece em diversas áreas da física, especialmente no contexto de fibra ótica e condensação de Bose-Einstein. O problema foi tratado de maneira analítica e numérica, e os resultados se mostram interessantes. De fato, sendo a teoria não integrável não é encontrado um conjunto com infinitas cargas conservadas, mas, pode-se encontrar um conjunto com infinitas cargas assintoticamente conservadas, i.e., quando dois solitons colidem as cargas que eles tinham antes tem os seus valores alterados, mas após a colisão, os valores inicias, de antes do espalhamento, são recobrados.Biblioteca Digitais de Teses e Dissertações da USPFerreira, Luiz AgostinhoMartins, Gabriel Luchini2013-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-30042013-143928/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2016-07-28T16:10:35Zoai:teses.usp.br:tde-30042013-143928Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Hidden symmetries in gauge theories & quasi-integrablility
Simetrias escondidas em teorias de calibre & quasi-integrabilidade
title Hidden symmetries in gauge theories & quasi-integrablility
spellingShingle Hidden symmetries in gauge theories & quasi-integrablility
Martins, Gabriel Luchini
Cargas conservadas
Espaço de laços
Formulação de curvature nula
Simetrias escondidas
Solitons
title_short Hidden symmetries in gauge theories & quasi-integrablility
title_full Hidden symmetries in gauge theories & quasi-integrablility
title_fullStr Hidden symmetries in gauge theories & quasi-integrablility
title_full_unstemmed Hidden symmetries in gauge theories & quasi-integrablility
title_sort Hidden symmetries in gauge theories & quasi-integrablility
author Martins, Gabriel Luchini
author_facet Martins, Gabriel Luchini
author_role author
dc.contributor.none.fl_str_mv Ferreira, Luiz Agostinho
dc.contributor.author.fl_str_mv Martins, Gabriel Luchini
dc.subject.por.fl_str_mv Cargas conservadas
Espaço de laços
Formulação de curvature nula
Simetrias escondidas
Solitons
topic Cargas conservadas
Espaço de laços
Formulação de curvature nula
Simetrias escondidas
Solitons
description This thesis is about some extensions of the ideas and techniques used in integrable field theories to deal with non-integrable theories. It is presented in two parts. The first part deals with gauge theories in 3 and 4 dimensional space-time; we propose what we call the integral formulation of them, which at the end give us a natural way of defining the conserved charges that are gauge invariant and do not depend on the parametrisation of space-time. The definition of gauge invariant conserved charges in non-Abelian gauge theories is an open issue in physics and we think our solution might be a first step into its full understanding. The integral formulation shows a deeper connection between different gauge theories: they share the same basic structure when written in the loop space. Moreover, in our construction the arguments leading to the conservation of the charges are dynamical and independent of the particular solution. In the second part we discuss the recently introduced concept called quasi-integrability: one observes soliton-like configurations evolving through non-integrable equations having properties similar to those expected for integrable theories. We study the case of a model which is a deformation of the non-linear Schr¨odinger equation consisting of a more general potential, connected in a way with the integrable one. The idea is to develop a mathematical approach to treat more realistic theories, which is in particular very important from the point of view of applications; the NLS model appears in many branches of physics, specially in optical fibres and Bose-Einstein condensation. The problem was treated analytically and numerically, and the results are interesting. Indeed, due to the fact that the model is not integrable one does not find an infinite number of conserved charges but, instead, a set of infinitely many charges that are asymptotically conserved, i.e., when two solitons undergo a scattering process the charges they carry before the collision change, but after the collision their values are recovered.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-30042013-143928/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-30042013-143928/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257498469269504