Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos

Detalhes bibliográficos
Autor(a) principal: Tanouye, Fernando Takeshi
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20022018-190857/
Resumo: Este estudo tem como finalidade principal a análise termodinâmica e estatística de proteínas através de modelos mínimos. Uma proteína é um polímero de aminoácidos, cuja função está essencialmente relacionada às conformações espaciais que ela adota em solução aquosa. Na forma funcional (dita nativa), essas conformações flutuam levemente em torno de um mínimo de energia-livre. O processo pelo qual uma cadeia protéica transita de estados não-nativos para a estrutura nativa é chamado de enovelamento, ou dobramento. Uma questão em aberto no campo de estudo de proteínas consiste justamente em entender a fundo o processo de enovelamento, cujo avanço tem um vasto potencial de aplicação, desde a predição de estruturas a partir de sequências de aminoácidos até o planejamento de fármacos e moléculas bioativas. Nossa investigação teórica procura abordar aspectos do enovelamento expressos através de grandezas termodinâmicas (energia média, calor específico, número de ligações de hidrogênio, entre outras) derivadas de modelos estatísticos na rede. Assim, num primeiro momento, analisamos o chamado modelo HP, ora por meio de enumeração exata, para cadeias curtas, ora por simulações de Monte Carlo, para cadeias maiores. No primeiro caso, propusemos a existência de uma relação entre a ocorrência de um segundo pico no calor específico associado na literatura à transição de congelamento com uma drástica redução no número de configurações entre os primeiros estados excitados e aqueles de menor energia. Observamos, também, que esse pico pode aparecer tanto para homopolímeros quanto para heteropolímeros, em ambas as redes quadrada e triangular. Num segundo momento, nosso enfoque se voltou para a inclusão de um solvente aquoso (dado pelo modelo de Bell-Lavis) ao sistema inicial. Isso nos possibilitou verificar, usando exclusivamente simulações de Monte Carlo e o algoritmo de Metropolis, o comportamento e a competição das ligações de hidrogênio água-água, água-proteína, proteína-proteína e na primeira camada de solvatação. O modelo acoplado exibiu algumas características do enovelamento, como o colapso hidrofóbico e a separação de monômeros (apolares no núcleo e polares na superfície), embora não capture a desnaturação fria. No apêndice, adicionamos algumas propostas para realização do cálculo numérico da pressão no ensemble canônico, desenvolvidas em paralelo ao projeto principal desta dissertação, mas que, numa primeira análise, verificamos serem consistentes e passíveis de futuros desdobramentos.
id USP_bf26316605784080f2aadcf918ae6ce5
oai_identifier_str oai:teses.usp.br:tde-20022018-190857
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimosProtein folding and hydrogen bonds - study of minimal modelsenovelamento de proteínasfísica estatísticaminimal modelsmodelos de redeprotein foldingstatistical physicsEste estudo tem como finalidade principal a análise termodinâmica e estatística de proteínas através de modelos mínimos. Uma proteína é um polímero de aminoácidos, cuja função está essencialmente relacionada às conformações espaciais que ela adota em solução aquosa. Na forma funcional (dita nativa), essas conformações flutuam levemente em torno de um mínimo de energia-livre. O processo pelo qual uma cadeia protéica transita de estados não-nativos para a estrutura nativa é chamado de enovelamento, ou dobramento. Uma questão em aberto no campo de estudo de proteínas consiste justamente em entender a fundo o processo de enovelamento, cujo avanço tem um vasto potencial de aplicação, desde a predição de estruturas a partir de sequências de aminoácidos até o planejamento de fármacos e moléculas bioativas. Nossa investigação teórica procura abordar aspectos do enovelamento expressos através de grandezas termodinâmicas (energia média, calor específico, número de ligações de hidrogênio, entre outras) derivadas de modelos estatísticos na rede. Assim, num primeiro momento, analisamos o chamado modelo HP, ora por meio de enumeração exata, para cadeias curtas, ora por simulações de Monte Carlo, para cadeias maiores. No primeiro caso, propusemos a existência de uma relação entre a ocorrência de um segundo pico no calor específico associado na literatura à transição de congelamento com uma drástica redução no número de configurações entre os primeiros estados excitados e aqueles de menor energia. Observamos, também, que esse pico pode aparecer tanto para homopolímeros quanto para heteropolímeros, em ambas as redes quadrada e triangular. Num segundo momento, nosso enfoque se voltou para a inclusão de um solvente aquoso (dado pelo modelo de Bell-Lavis) ao sistema inicial. Isso nos possibilitou verificar, usando exclusivamente simulações de Monte Carlo e o algoritmo de Metropolis, o comportamento e a competição das ligações de hidrogênio água-água, água-proteína, proteína-proteína e na primeira camada de solvatação. O modelo acoplado exibiu algumas características do enovelamento, como o colapso hidrofóbico e a separação de monômeros (apolares no núcleo e polares na superfície), embora não capture a desnaturação fria. No apêndice, adicionamos algumas propostas para realização do cálculo numérico da pressão no ensemble canônico, desenvolvidas em paralelo ao projeto principal desta dissertação, mas que, numa primeira análise, verificamos serem consistentes e passíveis de futuros desdobramentos.The finality of this study is to analyse proteins thermodynamics and statistics through minimal models. A protein is a polymer of amino acids, whose spatial conformations in aqueous solution determine its function. In the functional form (said native), those conformations fluctuates slightly around a free-energy minimum. The process by which a protein chain passes from non-native states to a stable native structure is called protein folding. An open question in the field of protein studies is to understand more deeply the folding process, whose advance can find a wide range of potential applications, since ab initio structure prediction from the amino acids sequence to biomolecules design. The theoretical approaches used here focus on aspects of protein folding given by some thermodynamic quantities (as mean energy, specific heat, number of hydrogen bonds and so on) obtained from statistical lattice models. Initially, we analyse the so-called HP model, at first using exact enumeration for short chains, then by Monte Carlo simulations for longer chains. In the first case, we propose a correlation between the occurrence of a second peak in the specific heat associated in the literature with a freezing transition and a sharp reduction on the number of configurations from the first excited states to the lowest energy states. In addition, we observe that this peak may appear to both homopolymers and heteropolymers on square and triangular lattices. At a second moment, our focus turned to the introduction of a water-like solvent (Bell-Lavis model) to the initial system. This allowed us to verify, exclusively by means of Monte Carlo simulations with Metropolis algorithm, the behavior and competition of hydrogen bonds between water-water molecules, water-protein, and protein-protein monomers and at the first hydration layer. The combined model showed some classical folding properties, as hydrophobic collapse and monomers segregation (apolar residues at the core and polar residues at the surface), although it did not capture cold denaturation. We have included in the appendix some proposals to perform numerical calculations of the canonical pressure, which were developed alongside the main subject of this thesis and a first analysis has proved to be consistent and susceptible to further developments.Biblioteca Digitais de Teses e Dissertações da USPHenriques, Vera BohomoletzTanouye, Fernando Takeshi2017-09-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-20022018-190857/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-09-20T19:49:24Zoai:teses.usp.br:tde-20022018-190857Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T19:49:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
Protein folding and hydrogen bonds - study of minimal models
title Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
spellingShingle Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
Tanouye, Fernando Takeshi
enovelamento de proteínas
física estatística
minimal models
modelos de rede
protein folding
statistical physics
title_short Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
title_full Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
title_fullStr Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
title_full_unstemmed Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
title_sort Enovelamento de proteínas e ligações de hidrogênio - estudo de modelos mínimos
author Tanouye, Fernando Takeshi
author_facet Tanouye, Fernando Takeshi
author_role author
dc.contributor.none.fl_str_mv Henriques, Vera Bohomoletz
dc.contributor.author.fl_str_mv Tanouye, Fernando Takeshi
dc.subject.por.fl_str_mv enovelamento de proteínas
física estatística
minimal models
modelos de rede
protein folding
statistical physics
topic enovelamento de proteínas
física estatística
minimal models
modelos de rede
protein folding
statistical physics
description Este estudo tem como finalidade principal a análise termodinâmica e estatística de proteínas através de modelos mínimos. Uma proteína é um polímero de aminoácidos, cuja função está essencialmente relacionada às conformações espaciais que ela adota em solução aquosa. Na forma funcional (dita nativa), essas conformações flutuam levemente em torno de um mínimo de energia-livre. O processo pelo qual uma cadeia protéica transita de estados não-nativos para a estrutura nativa é chamado de enovelamento, ou dobramento. Uma questão em aberto no campo de estudo de proteínas consiste justamente em entender a fundo o processo de enovelamento, cujo avanço tem um vasto potencial de aplicação, desde a predição de estruturas a partir de sequências de aminoácidos até o planejamento de fármacos e moléculas bioativas. Nossa investigação teórica procura abordar aspectos do enovelamento expressos através de grandezas termodinâmicas (energia média, calor específico, número de ligações de hidrogênio, entre outras) derivadas de modelos estatísticos na rede. Assim, num primeiro momento, analisamos o chamado modelo HP, ora por meio de enumeração exata, para cadeias curtas, ora por simulações de Monte Carlo, para cadeias maiores. No primeiro caso, propusemos a existência de uma relação entre a ocorrência de um segundo pico no calor específico associado na literatura à transição de congelamento com uma drástica redução no número de configurações entre os primeiros estados excitados e aqueles de menor energia. Observamos, também, que esse pico pode aparecer tanto para homopolímeros quanto para heteropolímeros, em ambas as redes quadrada e triangular. Num segundo momento, nosso enfoque se voltou para a inclusão de um solvente aquoso (dado pelo modelo de Bell-Lavis) ao sistema inicial. Isso nos possibilitou verificar, usando exclusivamente simulações de Monte Carlo e o algoritmo de Metropolis, o comportamento e a competição das ligações de hidrogênio água-água, água-proteína, proteína-proteína e na primeira camada de solvatação. O modelo acoplado exibiu algumas características do enovelamento, como o colapso hidrofóbico e a separação de monômeros (apolares no núcleo e polares na superfície), embora não capture a desnaturação fria. No apêndice, adicionamos algumas propostas para realização do cálculo numérico da pressão no ensemble canônico, desenvolvidas em paralelo ao projeto principal desta dissertação, mas que, numa primeira análise, verificamos serem consistentes e passíveis de futuros desdobramentos.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20022018-190857/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-20022018-190857/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257147916681216