Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3144/tde-17082011-153639/ |
Resumo: | Na Engenharia Civil são diversos os métodos aplicados visando à otimização de estruturas. Esta dissertação apresenta um estudo e uma aplicação de um desses métodos: os Algoritmos Genéticos (AG\'s). Os Algoritmos Genéticos são algoritmos de busca, não-determinísticos, que trabalham com amostras do conjunto de soluções e se inspiram na teoria da evolução das espécies para resolver o problema. Neste trabalho de pesquisa buscou-se apresentar as principais técnicas e parâmetros utilizados por diversos autores neste tema. Como objetivo principal pretendeu-se, através dos conhecimentos adquiridos sobre o assunto, aplicá-lo na otimização topológica e paramétrica de vigas de concreto armado, submetidas a um carregamento distribuído. Adotaram-se restrições laterais das variáveis e comportamentais (tensões máximas admissíveis - ELU). Procurou-se trabalhar com variáveis discretas, que melhor representam a realidade do projetista de estruturas. Para aplicação desta técnica implementou-se um programa, em linguagem Java seguindo o paradigma de programação orientada a objetos. O programa foi testado aplicando-se a um problema de otimização abordado por outros autores. Um deles utilizou uma abordagem determinística para a solução do problema. Outro utilizou uma abordagem probabilística, porém com variáveis contínuas. Em 85% dos casos o programa (nomeado AGEN) conseguiu encontrar a solução ótima. Concluiu-se que os algoritmos genéticos são uma técnica bastante robusta, que proporciona resultados significativos, principalmente quando se trata de problemas complexos, com variáveis discretas e restrições em constantes mudanças. As deficiências desta técnica são a sua grande dependência em relação à amostra inicial da população, o seu custo computacional e a calibração de parâmetros. Procurou-se, através deste trabalho, apresentar aos pesquisadores e projetistas do campo da engenharia mais uma ferramenta que utiliza técnicas computacionais para encontrar melhores soluções para otimização de estruturas. Pretendendo-se, assim, estimular o desenvolvimento de mais pesquisas sobre este tema bastante promissor. |
id |
USP_c0649c4108a5332bf3f9544d695fb044 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17082011-153639 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos.Topology and shape optimization of concrete beams by genetic algorithmsAlgoritmos genéticosBeams (optimization)Genetic algorithmsVigas (otimização)Na Engenharia Civil são diversos os métodos aplicados visando à otimização de estruturas. Esta dissertação apresenta um estudo e uma aplicação de um desses métodos: os Algoritmos Genéticos (AG\'s). Os Algoritmos Genéticos são algoritmos de busca, não-determinísticos, que trabalham com amostras do conjunto de soluções e se inspiram na teoria da evolução das espécies para resolver o problema. Neste trabalho de pesquisa buscou-se apresentar as principais técnicas e parâmetros utilizados por diversos autores neste tema. Como objetivo principal pretendeu-se, através dos conhecimentos adquiridos sobre o assunto, aplicá-lo na otimização topológica e paramétrica de vigas de concreto armado, submetidas a um carregamento distribuído. Adotaram-se restrições laterais das variáveis e comportamentais (tensões máximas admissíveis - ELU). Procurou-se trabalhar com variáveis discretas, que melhor representam a realidade do projetista de estruturas. Para aplicação desta técnica implementou-se um programa, em linguagem Java seguindo o paradigma de programação orientada a objetos. O programa foi testado aplicando-se a um problema de otimização abordado por outros autores. Um deles utilizou uma abordagem determinística para a solução do problema. Outro utilizou uma abordagem probabilística, porém com variáveis contínuas. Em 85% dos casos o programa (nomeado AGEN) conseguiu encontrar a solução ótima. Concluiu-se que os algoritmos genéticos são uma técnica bastante robusta, que proporciona resultados significativos, principalmente quando se trata de problemas complexos, com variáveis discretas e restrições em constantes mudanças. As deficiências desta técnica são a sua grande dependência em relação à amostra inicial da população, o seu custo computacional e a calibração de parâmetros. Procurou-se, através deste trabalho, apresentar aos pesquisadores e projetistas do campo da engenharia mais uma ferramenta que utiliza técnicas computacionais para encontrar melhores soluções para otimização de estruturas. Pretendendo-se, assim, estimular o desenvolvimento de mais pesquisas sobre este tema bastante promissor.This work presents a study and application using Genetic Algorithms (GAs) to solve problems that optimization structures, more specifically concrete beans. The GAs are search algorithms, non-deterministics that works with a population of solutions. Its inspired on the evolutions theory of the species to solve problems. In this dissertation sought to show the most used techniques and parameters about this subject. The primary objective was (through the knowledge obtained during this research) to apply it in the topological and parametrical optimization of concrete beams, submitted by a distributed load. Lateral and behavioral constraineds are used. It was tried to work with a discrete variables, which represent more really the context of structures designer. To apply this technique a program was implemented, using the Java language through the oriented object paradigm. The program was tested applying a optimization problem approached by other authors. One of them used a deterministic approach to solution the problem. Another used a probabilistic approach, but with continuous variable. In 85% of the cases the program (called AGEN) get success. It was concluded that genetic algorithms are a very robust technique, which provides significant results, especially in complex problems with discrete variables and constraints on dynamic changes. The weaknesses of this technique are the high dependence on initial population, its computational cost and the parameters calibration. It was, in this work, presenting to scientists and designers in the structural engineering field another tool that uses computational techniques to find better solutions for structures optimization. It pretended to stimulate the development of more research on this topic enough promising.Biblioteca Digitais de Teses e Dissertações da USPPimenta, Paulo de MattosLima, Marina Lemos Rio2011-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3144/tde-17082011-153639/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-17082011-153639Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. Topology and shape optimization of concrete beams by genetic algorithms |
title |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. |
spellingShingle |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. Lima, Marina Lemos Rio Algoritmos genéticos Beams (optimization) Genetic algorithms Vigas (otimização) |
title_short |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. |
title_full |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. |
title_fullStr |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. |
title_full_unstemmed |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. |
title_sort |
Otimização topológica e paramétrica de vigas de concreto armado utilizando algoritmos genéticos. |
author |
Lima, Marina Lemos Rio |
author_facet |
Lima, Marina Lemos Rio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pimenta, Paulo de Mattos |
dc.contributor.author.fl_str_mv |
Lima, Marina Lemos Rio |
dc.subject.por.fl_str_mv |
Algoritmos genéticos Beams (optimization) Genetic algorithms Vigas (otimização) |
topic |
Algoritmos genéticos Beams (optimization) Genetic algorithms Vigas (otimização) |
description |
Na Engenharia Civil são diversos os métodos aplicados visando à otimização de estruturas. Esta dissertação apresenta um estudo e uma aplicação de um desses métodos: os Algoritmos Genéticos (AG\'s). Os Algoritmos Genéticos são algoritmos de busca, não-determinísticos, que trabalham com amostras do conjunto de soluções e se inspiram na teoria da evolução das espécies para resolver o problema. Neste trabalho de pesquisa buscou-se apresentar as principais técnicas e parâmetros utilizados por diversos autores neste tema. Como objetivo principal pretendeu-se, através dos conhecimentos adquiridos sobre o assunto, aplicá-lo na otimização topológica e paramétrica de vigas de concreto armado, submetidas a um carregamento distribuído. Adotaram-se restrições laterais das variáveis e comportamentais (tensões máximas admissíveis - ELU). Procurou-se trabalhar com variáveis discretas, que melhor representam a realidade do projetista de estruturas. Para aplicação desta técnica implementou-se um programa, em linguagem Java seguindo o paradigma de programação orientada a objetos. O programa foi testado aplicando-se a um problema de otimização abordado por outros autores. Um deles utilizou uma abordagem determinística para a solução do problema. Outro utilizou uma abordagem probabilística, porém com variáveis contínuas. Em 85% dos casos o programa (nomeado AGEN) conseguiu encontrar a solução ótima. Concluiu-se que os algoritmos genéticos são uma técnica bastante robusta, que proporciona resultados significativos, principalmente quando se trata de problemas complexos, com variáveis discretas e restrições em constantes mudanças. As deficiências desta técnica são a sua grande dependência em relação à amostra inicial da população, o seu custo computacional e a calibração de parâmetros. Procurou-se, através deste trabalho, apresentar aos pesquisadores e projetistas do campo da engenharia mais uma ferramenta que utiliza técnicas computacionais para encontrar melhores soluções para otimização de estruturas. Pretendendo-se, assim, estimular o desenvolvimento de mais pesquisas sobre este tema bastante promissor. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3144/tde-17082011-153639/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3144/tde-17082011-153639/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257045665841152 |