Optimisation of gas-lifted system using nonlinear model predictive control.

Detalhes bibliográficos
Autor(a) principal: Adukwu, Ojonugwa
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3139/tde-26042023-151430/
Resumo: Gas-lifted system like every other artificial lift system is used when the natural energy for lifting crude oil from the reservoir into the downstream facilities becomes insufficient. This research focused on optimising crude oil recovery from gas-lifted oil well by using nonlinear model predictive control (NMPC). Two key approaches were used: (a) casingheading instability reduction/elimination and (b) fault-tolerant control in the system. At first a developed nonlinear model predictive controller (NMPC) was presented. The controller was tested on continuous stirred tank reactor (CSTR) using IPOPT solver in CasADi and fmincon optimizer in MATLAB. Finite horizon NMPC was selected and used to optimise the gas-lifted system. The controller stabilised the undisturbed system improving production by 5.63% compared to the open-loop operation when the system is in casing-heading instability. For the two input case, the steady state production, aided by the high input target, reached 12.25kg/s which is far more than 9.57 kg/s for the one input case. This controller showed a 3.76% improvement over PI controller for the same purpose. Estimation performances of three nonlinear filters were compared and Extended Kalman filter was selected to provide the estimated states of the system which were used for fault-tolerant control of the gas-lifted system. Passive FTC, altering control bound and altering control cost were used to implement the FTC problems. Passive FTC provided more robustness but small output change. Reducing the upper control bound ensured stability but production could decline. Increasing the controller cost that prioritised the input target increased production but it was prone to casing-heading instability. While the FTC scheme could reduce the downtime, the casing-heading instability removal increases the average oil production rate hence optimising the gas-lifted system.
id USP_c514c86ddf7bf38a3dc4c20d2501dc64
oai_identifier_str oai:teses.usp.br:tde-26042023-151430
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Optimisation of gas-lifted system using nonlinear model predictive control.Otimização do sistema de elevação a gás usando controle preditivo de modelo não linear.Casing-heading instabilityControle preditivo de modelo não linearControle tolerante a falhasFault-tolerant controlGas liftInstabilidade do cabeçote do revestimentoModel predictive controlOptimisationOtimizaçãoSistema de elevação a gásGas-lifted system like every other artificial lift system is used when the natural energy for lifting crude oil from the reservoir into the downstream facilities becomes insufficient. This research focused on optimising crude oil recovery from gas-lifted oil well by using nonlinear model predictive control (NMPC). Two key approaches were used: (a) casingheading instability reduction/elimination and (b) fault-tolerant control in the system. At first a developed nonlinear model predictive controller (NMPC) was presented. The controller was tested on continuous stirred tank reactor (CSTR) using IPOPT solver in CasADi and fmincon optimizer in MATLAB. Finite horizon NMPC was selected and used to optimise the gas-lifted system. The controller stabilised the undisturbed system improving production by 5.63% compared to the open-loop operation when the system is in casing-heading instability. For the two input case, the steady state production, aided by the high input target, reached 12.25kg/s which is far more than 9.57 kg/s for the one input case. This controller showed a 3.76% improvement over PI controller for the same purpose. Estimation performances of three nonlinear filters were compared and Extended Kalman filter was selected to provide the estimated states of the system which were used for fault-tolerant control of the gas-lifted system. Passive FTC, altering control bound and altering control cost were used to implement the FTC problems. Passive FTC provided more robustness but small output change. Reducing the upper control bound ensured stability but production could decline. Increasing the controller cost that prioritised the input target increased production but it was prone to casing-heading instability. While the FTC scheme could reduce the downtime, the casing-heading instability removal increases the average oil production rate hence optimising the gas-lifted system.O sistema de elevação a gás (gas lift, do inglês), como qualquer outro sistema de elevação artificial, é usado quando a energia natural para elevar o petróleo bruto do reservatório para as instalações a jusante se torna insuficiente. Esta pesquisa se concentrou na otimização da recuperação de petróleo bruto do poço de petróleo levantado a gás usando o controle preditivo de modelo não linear (NMPC, do inglês). Duas abordagens principais foram usadas: (a) redução/eliminação da instabilidade do cabeçote do revestimento e (b) controle tolerante a falhas no sistema. Inicialmente foi apresentado um NMPC desenvolvido. O controlador foi testado em reator de tanque agitado contínuo (CSTR), usando o solver de otimizações IPOPT no CasADi e o otimizador fmincon no MATLAB. O NMPC de horizonte finito foi selecionado e usado para otimizar o sistema gas-lifted. O controlador estabilizou o sistema não perturbado, melhorando a produção em 5,63% em comparação com a operação em malha aberta quando o sistema está em instabilidade de cabeçote de revestimento. A produção em estado estacionário, auxiliada pela alto alvo de entrada, atingiu 12,25 kg/s, muito mais do que 9,57 kg/s obtidos no caso de uma entrada. Este controlador apresentou uma melhoria de 3,76% em relação ao controlador PI (proporcional-integral) para o mesmo caso. O desempenho de estimativa de três filtros não lineares foram comparados e o filtro de Kalman estendido foi selecionado para estimar estados do sistema, que foram usados para controle tolerante a falhas (FTC, do inglês) do sistema de elevação a gás. FTC passivo, alterando limite de controle e alterando custo de controle foram usados para implementar os problemas de FTC. O FTC passivo forneceu mais robustez, mas pequena alteração na produção. Redução do limite superior de controle garantiu a estabilidade, mas a produção pode diminuir. Aumento do custo do controlador que priorizou o alvo de entrada aumentou a produção, mas estava propenso a instabilidade do cabeçote do revestimento. Enquanto o esquema FTC pudesse reduzir o tempo de inatividade, a remoção da instabilidade do cabeçote do revestimento aumenta a taxa média de produção de óleo, otimizando o sistema de elevação a gás.Biblioteca Digitais de Teses e Dissertações da USPKassab Junior, FuadAdukwu, Ojonugwa2023-03-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3139/tde-26042023-151430/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-27T17:15:07Zoai:teses.usp.br:tde-26042023-151430Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-27T17:15:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Optimisation of gas-lifted system using nonlinear model predictive control.
Otimização do sistema de elevação a gás usando controle preditivo de modelo não linear.
title Optimisation of gas-lifted system using nonlinear model predictive control.
spellingShingle Optimisation of gas-lifted system using nonlinear model predictive control.
Adukwu, Ojonugwa
Casing-heading instability
Controle preditivo de modelo não linear
Controle tolerante a falhas
Fault-tolerant control
Gas lift
Instabilidade do cabeçote do revestimento
Model predictive control
Optimisation
Otimização
Sistema de elevação a gás
title_short Optimisation of gas-lifted system using nonlinear model predictive control.
title_full Optimisation of gas-lifted system using nonlinear model predictive control.
title_fullStr Optimisation of gas-lifted system using nonlinear model predictive control.
title_full_unstemmed Optimisation of gas-lifted system using nonlinear model predictive control.
title_sort Optimisation of gas-lifted system using nonlinear model predictive control.
author Adukwu, Ojonugwa
author_facet Adukwu, Ojonugwa
author_role author
dc.contributor.none.fl_str_mv Kassab Junior, Fuad
dc.contributor.author.fl_str_mv Adukwu, Ojonugwa
dc.subject.por.fl_str_mv Casing-heading instability
Controle preditivo de modelo não linear
Controle tolerante a falhas
Fault-tolerant control
Gas lift
Instabilidade do cabeçote do revestimento
Model predictive control
Optimisation
Otimização
Sistema de elevação a gás
topic Casing-heading instability
Controle preditivo de modelo não linear
Controle tolerante a falhas
Fault-tolerant control
Gas lift
Instabilidade do cabeçote do revestimento
Model predictive control
Optimisation
Otimização
Sistema de elevação a gás
description Gas-lifted system like every other artificial lift system is used when the natural energy for lifting crude oil from the reservoir into the downstream facilities becomes insufficient. This research focused on optimising crude oil recovery from gas-lifted oil well by using nonlinear model predictive control (NMPC). Two key approaches were used: (a) casingheading instability reduction/elimination and (b) fault-tolerant control in the system. At first a developed nonlinear model predictive controller (NMPC) was presented. The controller was tested on continuous stirred tank reactor (CSTR) using IPOPT solver in CasADi and fmincon optimizer in MATLAB. Finite horizon NMPC was selected and used to optimise the gas-lifted system. The controller stabilised the undisturbed system improving production by 5.63% compared to the open-loop operation when the system is in casing-heading instability. For the two input case, the steady state production, aided by the high input target, reached 12.25kg/s which is far more than 9.57 kg/s for the one input case. This controller showed a 3.76% improvement over PI controller for the same purpose. Estimation performances of three nonlinear filters were compared and Extended Kalman filter was selected to provide the estimated states of the system which were used for fault-tolerant control of the gas-lifted system. Passive FTC, altering control bound and altering control cost were used to implement the FTC problems. Passive FTC provided more robustness but small output change. Reducing the upper control bound ensured stability but production could decline. Increasing the controller cost that prioritised the input target increased production but it was prone to casing-heading instability. While the FTC scheme could reduce the downtime, the casing-heading instability removal increases the average oil production rate hence optimising the gas-lifted system.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3139/tde-26042023-151430/
url https://www.teses.usp.br/teses/disponiveis/3/3139/tde-26042023-151430/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257357980008448