Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-16092004-154821/ |
Resumo: | Neste trabalho, tres modelos foram ajustados a um conjunto de dados obtido de um ensaio de controle biol´ogico para Diatraea saccharalis, uma praga comum em planta¸coes de cana-de-a¸c´ucar. Usando a distribui¸cao binomial como modelo de probabilidade, um ajuste adequado nao pode ser obtido, devido `a superdispersao gerada pela variabililidade dos dados e pelo excesso de zeros. Nesse caso, o modelo binomial inflacionado de zeros (ZIB) superdisperso ´e mais flex´ývel e eficiente para a modelagem desse tipo de dados. Entretanto, quando o interesse maior est´a sobre os valores positivos das propor¸coes, pode-se utilizar o modelo binomial truncado superdisperso. Uma abordagem alternativa eficiente que foi utilizada para a modelagem desse tipo de dados foi a Bayesiana, sendo o ajuste do modelo realizado usando as t´ecnicas de simula¸cao Monte Carlo em Cadeias de Markov, atrav´es do algoritmo Metropolis-Hastings e a sele¸cao dos modelos foi feita usando o DIC (Deviance Information Criterion) e o fator de Bayes. Os modelos foram implementados no procedimento IML (Iteractive Matrix Linear) do programa SAS (Statistical Analysis System) e no programa WinBUGS e a convergencia das estimativas foi verificada atrav´es da an´alise gr´afica dos valores gerados e usando os diagn´osticos de Raftery & Lewis e de Heidelberger & Welch, implementado no m´odulo CODA do programa R. |
id |
USP_c570251e2c66642103a721e43e86e633 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16092004-154821 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano.Models for zero-inflated and overdispersed proportion data - a bayesian approach.bayesian inference (statistic inference)biological controlcontrole biológicogeneralized linear modelsinferência bayesiana (inferência estatística0modelos lineares generalizadosNeste trabalho, tres modelos foram ajustados a um conjunto de dados obtido de um ensaio de controle biol´ogico para Diatraea saccharalis, uma praga comum em planta¸coes de cana-de-a¸c´ucar. Usando a distribui¸cao binomial como modelo de probabilidade, um ajuste adequado nao pode ser obtido, devido `a superdispersao gerada pela variabililidade dos dados e pelo excesso de zeros. Nesse caso, o modelo binomial inflacionado de zeros (ZIB) superdisperso ´e mais flex´ývel e eficiente para a modelagem desse tipo de dados. Entretanto, quando o interesse maior est´a sobre os valores positivos das propor¸coes, pode-se utilizar o modelo binomial truncado superdisperso. Uma abordagem alternativa eficiente que foi utilizada para a modelagem desse tipo de dados foi a Bayesiana, sendo o ajuste do modelo realizado usando as t´ecnicas de simula¸cao Monte Carlo em Cadeias de Markov, atrav´es do algoritmo Metropolis-Hastings e a sele¸cao dos modelos foi feita usando o DIC (Deviance Information Criterion) e o fator de Bayes. Os modelos foram implementados no procedimento IML (Iteractive Matrix Linear) do programa SAS (Statistical Analysis System) e no programa WinBUGS e a convergencia das estimativas foi verificada atrav´es da an´alise gr´afica dos valores gerados e usando os diagn´osticos de Raftery & Lewis e de Heidelberger & Welch, implementado no m´odulo CODA do programa R.In general the standard binomial regression models do not fit well to proportion data from biological control assays, manly when there is excess of zeros and overdispersion. In this work a zero-inflated binomial model is applied to a data set obtained from a biological control assay for Diatraea saccharalis, a commom pest in sugar cane. A parasite (Trichogramma galloi) was put to parasitize 128 eggs of the Anagasta kuehniella, an economically suitable alternative host (Parra, 1997), with a variable number of female parasites (2, 4, 8,..., 128), each with 10 replicates in a completely randomized experiment. When interest is only in the positive proportion data, a model can be based on the truncated binomial distribution. A Bayesian procedure was formulated using a simulation technique (Metropolis Hastings) for estimation of the posterior parameters of interest. The convergence of the Markov Chain generated was monitored by visualization of the trace plot and using Raftery & Lewis and Heidelberg & Welch diagnostics presented in the module CODA of the software R.Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesBorgatto, Adriano Ferreti2004-06-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-16092004-154821/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:49Zoai:teses.usp.br:tde-16092004-154821Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. Models for zero-inflated and overdispersed proportion data - a bayesian approach. |
title |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. |
spellingShingle |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. Borgatto, Adriano Ferreti bayesian inference (statistic inference) biological control controle biológico generalized linear models inferência bayesiana (inferência estatística0 modelos lineares generalizados |
title_short |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. |
title_full |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. |
title_fullStr |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. |
title_full_unstemmed |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. |
title_sort |
Modelos para proporções com superdispersão e excesso de zeros - um procedimento Bayesiano. |
author |
Borgatto, Adriano Ferreti |
author_facet |
Borgatto, Adriano Ferreti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Demetrio, Clarice Garcia Borges |
dc.contributor.author.fl_str_mv |
Borgatto, Adriano Ferreti |
dc.subject.por.fl_str_mv |
bayesian inference (statistic inference) biological control controle biológico generalized linear models inferência bayesiana (inferência estatística0 modelos lineares generalizados |
topic |
bayesian inference (statistic inference) biological control controle biológico generalized linear models inferência bayesiana (inferência estatística0 modelos lineares generalizados |
description |
Neste trabalho, tres modelos foram ajustados a um conjunto de dados obtido de um ensaio de controle biol´ogico para Diatraea saccharalis, uma praga comum em planta¸coes de cana-de-a¸c´ucar. Usando a distribui¸cao binomial como modelo de probabilidade, um ajuste adequado nao pode ser obtido, devido `a superdispersao gerada pela variabililidade dos dados e pelo excesso de zeros. Nesse caso, o modelo binomial inflacionado de zeros (ZIB) superdisperso ´e mais flex´ývel e eficiente para a modelagem desse tipo de dados. Entretanto, quando o interesse maior est´a sobre os valores positivos das propor¸coes, pode-se utilizar o modelo binomial truncado superdisperso. Uma abordagem alternativa eficiente que foi utilizada para a modelagem desse tipo de dados foi a Bayesiana, sendo o ajuste do modelo realizado usando as t´ecnicas de simula¸cao Monte Carlo em Cadeias de Markov, atrav´es do algoritmo Metropolis-Hastings e a sele¸cao dos modelos foi feita usando o DIC (Deviance Information Criterion) e o fator de Bayes. Os modelos foram implementados no procedimento IML (Iteractive Matrix Linear) do programa SAS (Statistical Analysis System) e no programa WinBUGS e a convergencia das estimativas foi verificada atrav´es da an´alise gr´afica dos valores gerados e usando os diagn´osticos de Raftery & Lewis e de Heidelberger & Welch, implementado no m´odulo CODA do programa R. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-06-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-16092004-154821/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-16092004-154821/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257078349955072 |