Investigating spin liquids via projected wavefunctions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-06042022-111534/ |
Resumo: | Spin liquids are exquisite states of matter which host fractionalized excitations of spin and show no long-range magnetic order even at zero temperature due to quantum fluctuations. They have been extensively studied using fractionalized representations of the spin degrees of freedom in the so-called parton construction in conjunction with the Gutzwiller projection. Using Mean Field Theories (MFT), this constraint can be imposed on average, and numerical techniques, such as the Variational Monte Carlo (VMC) are required to impose the condition exactly at each site. In this framework, the VMC is a powerful tool to indicate which MFT ansatz is favored energetically to represent the spin liquid state based on the variational principle and the specific spin fractionalized representation. We employed this approach to investigate a putative chiral spin liquid state in the Kagome lattice using the Abrikosov representation which can host spinons: neutral spin-1/2 fermionic quasiparticles. This work was performed in the J1 − Jd − Jχ Kagome Lattice model, and it was inspired by experimental results from the material α − Cu3Zn (OH)6 Cl2 (kapellasite) - a polymorphous structure of ZnCu3(OH)6Cl2 (herbertsmithite) - with no long-range order down to T = 20mK. Our VMC results favor a gapless chiral spin liquid with staggered flux ±π/2 over the triangles and 0 flux on the hexagons in the region with Jd/ |Jχ| > 0 for small |J1| < 0.1. We also investigated the stability of this spin-liquid state to ordered phases known to occur in the model. In addition, new non-coplanar ordered phases were encountered via the gradient descent method in the limit of S » 1 which may be relevant for ordered Kagome materials. By representing the influence of the ordered phases via a fictitious Zeeman field in a spin density wave (SDW) ansatz for the VMC, we have found consistent results with our classical phase diagram, establishing a more realistic region for the spin liquid domain. |
id |
USP_c6988264e4786f12c9ca06c3216950b3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06042022-111534 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Investigating spin liquids via projected wavefunctionsInvestigando líquidos de spin através de funções de onda projetadasConstrução de PartonsFrustrated magnetismFunções de onda projetadas de GutzwillerGutzwiller projected wave functionsLíquidos de spin quânticosMagnetismo frustradoMonte Carlo variacionalParton constructionQuantum spin liquidsVariational Monte CarloSpin liquids are exquisite states of matter which host fractionalized excitations of spin and show no long-range magnetic order even at zero temperature due to quantum fluctuations. They have been extensively studied using fractionalized representations of the spin degrees of freedom in the so-called parton construction in conjunction with the Gutzwiller projection. Using Mean Field Theories (MFT), this constraint can be imposed on average, and numerical techniques, such as the Variational Monte Carlo (VMC) are required to impose the condition exactly at each site. In this framework, the VMC is a powerful tool to indicate which MFT ansatz is favored energetically to represent the spin liquid state based on the variational principle and the specific spin fractionalized representation. We employed this approach to investigate a putative chiral spin liquid state in the Kagome lattice using the Abrikosov representation which can host spinons: neutral spin-1/2 fermionic quasiparticles. This work was performed in the J1 − Jd − Jχ Kagome Lattice model, and it was inspired by experimental results from the material α − Cu3Zn (OH)6 Cl2 (kapellasite) - a polymorphous structure of ZnCu3(OH)6Cl2 (herbertsmithite) - with no long-range order down to T = 20mK. Our VMC results favor a gapless chiral spin liquid with staggered flux ±π/2 over the triangles and 0 flux on the hexagons in the region with Jd/ |Jχ| > 0 for small |J1| < 0.1. We also investigated the stability of this spin-liquid state to ordered phases known to occur in the model. In addition, new non-coplanar ordered phases were encountered via the gradient descent method in the limit of S » 1 which may be relevant for ordered Kagome materials. By representing the influence of the ordered phases via a fictitious Zeeman field in a spin density wave (SDW) ansatz for the VMC, we have found consistent results with our classical phase diagram, establishing a more realistic region for the spin liquid domain.Líquidos de spin são fases exóticas da matéria que abrigam excitações fracionalizadas de spin, além de não demonstrarem ordenamento magnético de longo alcance mesmo próximo à temperatura zero devido à flutuações quânticas. Essas fases têm sido extensivamente estudadas através de representações fracionalizadas dos graus de liberdade do spin através do formalismo chamado Construção de Partons em conjunção com a projeção de Gutzwiller. Através de Teorias de Campo Médio (MFT), essa condição física só pode ser imposta na média, de forma que técnicas numéricas como o Monte Carlo Variacional (VMC) são necessárias para a imposição do vínculo de forma exata em cada sítio. Nesse contexto, o VMC é uma poderosa ferramenta que permite indicar qual ansatz de campo médio é favorecido energeticamente para representar um estado de líquido de spin, através do princípio variacional junto da representação fracionalizada de spin adotada. Nós desenvolvemos essa tecnologia com o intuito de investigarmos um líquido de spin quiral particular na rede de Kagome utilizando férmions de Abrikosov, que contém os chamados spinons: quasipartículas fermiônicas neutras de spin 1/2. Esse trabalho foi realizado considerando-se o modelo J1 − Jd − Jχ na rede de Kagome, e foi motivado por resultados experimentais no material α − Cu3Zn (OH)6 Cl2 (kapellasita) - uma estrutura polimórfica ao mineral ZnCu3(OH)6Cl2 (herbertsmithite) - sem ordenamento magnético de longo alcance até T = 20mK. Nossos resultados de VMC indicam um favorecimento do líquido de spin quiral sem gap com fluxos alternados ±π/2 sobre os triângulos e fluxo 0 nos hexágonos, ao longo da região com Jd/ |Jχ| > 0 para |J1| < 0.1. Nós também investigamos a estabilidade desse líquido de spin com respeito a fases magnéticas ordenadas conhecidas na literatura, além de encontrarmos novas fases clássicas não coplanares que possam ser relevante para materiais de Kagome ordenados no limite em que S » 1. Por fim, representando a possível influência de ordenamento magnético com um campo de Zeeman fictício em um ansatz de onda de densidade de spin (SDW) para o VMC, demarcarmos a região no espaço de acoplamentos para o favorecimento do líquido de spin do ponto de vista de flutuações quânticas.Biblioteca Digitais de Teses e Dissertações da USPAndrade, Eric de Castro eSilva, João Augusto Sobral da2022-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-06042022-111534/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T21:49:03Zoai:teses.usp.br:tde-06042022-111534Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T21:49:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Investigating spin liquids via projected wavefunctions Investigando líquidos de spin através de funções de onda projetadas |
title |
Investigating spin liquids via projected wavefunctions |
spellingShingle |
Investigating spin liquids via projected wavefunctions Silva, João Augusto Sobral da Construção de Partons Frustrated magnetism Funções de onda projetadas de Gutzwiller Gutzwiller projected wave functions Líquidos de spin quânticos Magnetismo frustrado Monte Carlo variacional Parton construction Quantum spin liquids Variational Monte Carlo |
title_short |
Investigating spin liquids via projected wavefunctions |
title_full |
Investigating spin liquids via projected wavefunctions |
title_fullStr |
Investigating spin liquids via projected wavefunctions |
title_full_unstemmed |
Investigating spin liquids via projected wavefunctions |
title_sort |
Investigating spin liquids via projected wavefunctions |
author |
Silva, João Augusto Sobral da |
author_facet |
Silva, João Augusto Sobral da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Andrade, Eric de Castro e |
dc.contributor.author.fl_str_mv |
Silva, João Augusto Sobral da |
dc.subject.por.fl_str_mv |
Construção de Partons Frustrated magnetism Funções de onda projetadas de Gutzwiller Gutzwiller projected wave functions Líquidos de spin quânticos Magnetismo frustrado Monte Carlo variacional Parton construction Quantum spin liquids Variational Monte Carlo |
topic |
Construção de Partons Frustrated magnetism Funções de onda projetadas de Gutzwiller Gutzwiller projected wave functions Líquidos de spin quânticos Magnetismo frustrado Monte Carlo variacional Parton construction Quantum spin liquids Variational Monte Carlo |
description |
Spin liquids are exquisite states of matter which host fractionalized excitations of spin and show no long-range magnetic order even at zero temperature due to quantum fluctuations. They have been extensively studied using fractionalized representations of the spin degrees of freedom in the so-called parton construction in conjunction with the Gutzwiller projection. Using Mean Field Theories (MFT), this constraint can be imposed on average, and numerical techniques, such as the Variational Monte Carlo (VMC) are required to impose the condition exactly at each site. In this framework, the VMC is a powerful tool to indicate which MFT ansatz is favored energetically to represent the spin liquid state based on the variational principle and the specific spin fractionalized representation. We employed this approach to investigate a putative chiral spin liquid state in the Kagome lattice using the Abrikosov representation which can host spinons: neutral spin-1/2 fermionic quasiparticles. This work was performed in the J1 − Jd − Jχ Kagome Lattice model, and it was inspired by experimental results from the material α − Cu3Zn (OH)6 Cl2 (kapellasite) - a polymorphous structure of ZnCu3(OH)6Cl2 (herbertsmithite) - with no long-range order down to T = 20mK. Our VMC results favor a gapless chiral spin liquid with staggered flux ±π/2 over the triangles and 0 flux on the hexagons in the region with Jd/ |Jχ| > 0 for small |J1| < 0.1. We also investigated the stability of this spin-liquid state to ordered phases known to occur in the model. In addition, new non-coplanar ordered phases were encountered via the gradient descent method in the limit of S » 1 which may be relevant for ordered Kagome materials. By representing the influence of the ordered phases via a fictitious Zeeman field in a spin density wave (SDW) ansatz for the VMC, we have found consistent results with our classical phase diagram, establishing a more realistic region for the spin liquid domain. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-06042022-111534/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-06042022-111534/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256711948140544 |