Espaço do momento: modelos da química quântica

Detalhes bibliográficos
Autor(a) principal: Hermoso, Willian
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/46/46132/tde-26112008-115257/
Resumo: Em um curso tradicional de Química Quântica, os modelos estudados para ilustrar algumas das ferramentas da Mecânica Quântica relevantes para a compreensão da estrutura da matéria no nível atômico e molecular são apresentados no que se convencionou chamar, numa apresentação mais formal, de representação da posição. Nesta representação, o estado do sistema é descrito por uma função de onda dependente das posições das partículas que o constituem. Isso leva o estudante de química a uma concepção distorcida de que na natureza os estados dos sistemas devem ser obrigatoriamente descritos em termos das posições de suas partículas. Aqui mostramos que essa não é a única forma de abordar quanticamente a descrição de um sistema físico. Uma outra forma é servir-se da representação do momento, onde a função de estado depende do momento de cada uma das partículas. Existem dois caminhos para se obter as funções de estado na representação do momento. Uma delas é fazer-se a transformada de Fourier das funções de estado na representação da posição, e a outra é buscar resolver a equação de Schrödinger diretamente na representação do momento. Neste trabalho, foram discutidas essas duas abordagens para os modelos mais comuns estudados num curso de Química Quântica, sendo eles: a partícula na caixa, o oscilador harmônico, o átomo de hidrogênio, o átomo de hélio, o íon-molécula de hidrogênio (H2 +) e a molécula de hidrogênio (H2). Buscou-se mostrar uma perspectiva diferente na descrição desses sistemas bem como uma abordagem matemática distinta da usual e, também, as dificuldades, principalmente matemáticas, de sua aplicação e ensino num curso de Química Quântica.
id USP_c760fd5f90d5655eb388b9138605a661
oai_identifier_str oai:teses.usp.br:tde-26112008-115257
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Espaço do momento: modelos da química quânticaMomentum Space: Quantum Chemistry Modelsconfiguration spaceEspaço de configuraçõesModelos da química quânticamomentum representationQuantum Chemistry modelsQuímica quânticaRepresentação do momentoEm um curso tradicional de Química Quântica, os modelos estudados para ilustrar algumas das ferramentas da Mecânica Quântica relevantes para a compreensão da estrutura da matéria no nível atômico e molecular são apresentados no que se convencionou chamar, numa apresentação mais formal, de representação da posição. Nesta representação, o estado do sistema é descrito por uma função de onda dependente das posições das partículas que o constituem. Isso leva o estudante de química a uma concepção distorcida de que na natureza os estados dos sistemas devem ser obrigatoriamente descritos em termos das posições de suas partículas. Aqui mostramos que essa não é a única forma de abordar quanticamente a descrição de um sistema físico. Uma outra forma é servir-se da representação do momento, onde a função de estado depende do momento de cada uma das partículas. Existem dois caminhos para se obter as funções de estado na representação do momento. Uma delas é fazer-se a transformada de Fourier das funções de estado na representação da posição, e a outra é buscar resolver a equação de Schrödinger diretamente na representação do momento. Neste trabalho, foram discutidas essas duas abordagens para os modelos mais comuns estudados num curso de Química Quântica, sendo eles: a partícula na caixa, o oscilador harmônico, o átomo de hidrogênio, o átomo de hélio, o íon-molécula de hidrogênio (H2 +) e a molécula de hidrogênio (H2). Buscou-se mostrar uma perspectiva diferente na descrição desses sistemas bem como uma abordagem matemática distinta da usual e, também, as dificuldades, principalmente matemáticas, de sua aplicação e ensino num curso de Química Quântica.In a conventional course in Quantum Chemistry, the models usually presented to illustrate the use of some quantum mechanical tools that are relevant for a comprehension of the structure of matter at the atomic and molecular levels are approached in a way that has been termed, in a more formal presentation, as position representation. In this representation, the state of a system is described by a wavefunction that is dependent on the positions of all particles that define the system. As a consequence of this presentation, chemistry students assimilate a distorted conception that in nature the state of a system must necessarily be described in terms of particles positions. Here we show that this is not the only way to approach quantum mechanically the description of a physical system. In an alternative way, known as momentum representation, the state function is expressed in a way that it is explicitly dependent on the momentum of each particle. There are two ways to obtain wavefunctions in the momentum representation. In of them, use is made of a Fourier transform of the wavefunctions in the position representation, and in the other one, an attempt is made to solve Schroedinger´s equation directly in the momentum representation. In this work, we have discussed these two approaches by examining the most common models studied in a Quantum Chemistry course, namely: the particle in a box, the harmonic oscillator, the hydrogen atom, the helium atom, the hydrogen molecular ion, and the hydrogen molecule. We have tried to show a different physical perspective in the description of these systems as well as a distinct mathematical approach than the usual one, and also the difficulties, mainly mathematical, of applying and teaching this representation in a Quantum Chemistry course.Biblioteca Digitais de Teses e Dissertações da USPOrnellas, Fernando ReiHermoso, Willian2008-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/46/46132/tde-26112008-115257/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:57Zoai:teses.usp.br:tde-26112008-115257Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Espaço do momento: modelos da química quântica
Momentum Space: Quantum Chemistry Models
title Espaço do momento: modelos da química quântica
spellingShingle Espaço do momento: modelos da química quântica
Hermoso, Willian
configuration space
Espaço de configurações
Modelos da química quântica
momentum representation
Quantum Chemistry models
Química quântica
Representação do momento
title_short Espaço do momento: modelos da química quântica
title_full Espaço do momento: modelos da química quântica
title_fullStr Espaço do momento: modelos da química quântica
title_full_unstemmed Espaço do momento: modelos da química quântica
title_sort Espaço do momento: modelos da química quântica
author Hermoso, Willian
author_facet Hermoso, Willian
author_role author
dc.contributor.none.fl_str_mv Ornellas, Fernando Rei
dc.contributor.author.fl_str_mv Hermoso, Willian
dc.subject.por.fl_str_mv configuration space
Espaço de configurações
Modelos da química quântica
momentum representation
Quantum Chemistry models
Química quântica
Representação do momento
topic configuration space
Espaço de configurações
Modelos da química quântica
momentum representation
Quantum Chemistry models
Química quântica
Representação do momento
description Em um curso tradicional de Química Quântica, os modelos estudados para ilustrar algumas das ferramentas da Mecânica Quântica relevantes para a compreensão da estrutura da matéria no nível atômico e molecular são apresentados no que se convencionou chamar, numa apresentação mais formal, de representação da posição. Nesta representação, o estado do sistema é descrito por uma função de onda dependente das posições das partículas que o constituem. Isso leva o estudante de química a uma concepção distorcida de que na natureza os estados dos sistemas devem ser obrigatoriamente descritos em termos das posições de suas partículas. Aqui mostramos que essa não é a única forma de abordar quanticamente a descrição de um sistema físico. Uma outra forma é servir-se da representação do momento, onde a função de estado depende do momento de cada uma das partículas. Existem dois caminhos para se obter as funções de estado na representação do momento. Uma delas é fazer-se a transformada de Fourier das funções de estado na representação da posição, e a outra é buscar resolver a equação de Schrödinger diretamente na representação do momento. Neste trabalho, foram discutidas essas duas abordagens para os modelos mais comuns estudados num curso de Química Quântica, sendo eles: a partícula na caixa, o oscilador harmônico, o átomo de hidrogênio, o átomo de hélio, o íon-molécula de hidrogênio (H2 +) e a molécula de hidrogênio (H2). Buscou-se mostrar uma perspectiva diferente na descrição desses sistemas bem como uma abordagem matemática distinta da usual e, também, as dificuldades, principalmente matemáticas, de sua aplicação e ensino num curso de Química Quântica.
publishDate 2008
dc.date.none.fl_str_mv 2008-09-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/46/46132/tde-26112008-115257/
url http://www.teses.usp.br/teses/disponiveis/46/46132/tde-26112008-115257/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091111366426624