Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76132/tde-03092021-154745/ |
Resumo: | In the global scenario of increasing environmental concerns over the dependence on fossil fuels, photocatalytic water splitting has been regarded as a promising method for the clean production of hydrogen fuel (H2) from water and sunlight. Despite recent advancements, only a few materials can be efficiently applied as photocatalysts for this reaction. In this context, sodium tantalate (NaTaO3) is highly active for H2 evolution, although the wide band gap of 4.0 eV precludes its practical application for solar water splitting. Therefore, a variety of band-gap narrowing approaches for this compound have been recently proposed, including bismuth doping. In this work, Bi-doped NaTaO3 with a nanocubic morphology has been obtained through a simple molten salt method, in order that Bi3+-Ta5+ atomic substitutions promote the formation of midgap electronic states which allow the absorption of light from the simulated sunlight spectrum (AM 1.5G). X-ray diffraction results reveal that the orthorhombic perovskite structure of NaTaO3 undergoes a structural transition to pseudocubic upon low-concentration (0.5-4 mol%) Bi-doping. Accordingly, the Bi-doped photocatalysts present considerable H2 evolution under simulated sunlight, whereas pristine NaTaO3 exhibits negligible activity in these conditions. The highest H2 evolution rates are obtained with 3 mol% Bi-doped NaTaO3, as a possible consequence of the conjunction between the narrowed band gap of 3.6 eV with the rectified Ta-O-Ta bond angles in the pseudocubic lattice. Moreover, the photocatalytic activity is further improved and kept stable for 110h of reaction after Ni co-catalysts are loaded onto Bi-doped NaTaO3 by magnetron sputtering deposition, in order that the nanosized Ni particles may provide abundant surface reaction sites for the evolution of H2. |
id |
USP_c87b1d8ce930c65728fcda27bdc18e08 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03092021-154745 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitionsFotocatalisadores de NaTaO3 dopado com Bi para a produção de hidrogênio sob luz solar simulada: diminuição da banda proibida e transições estruturaisDivisão fotocatalítica da águaDopagemDopingPhase transitionPhotocatalytic water splittingTransição de faseIn the global scenario of increasing environmental concerns over the dependence on fossil fuels, photocatalytic water splitting has been regarded as a promising method for the clean production of hydrogen fuel (H2) from water and sunlight. Despite recent advancements, only a few materials can be efficiently applied as photocatalysts for this reaction. In this context, sodium tantalate (NaTaO3) is highly active for H2 evolution, although the wide band gap of 4.0 eV precludes its practical application for solar water splitting. Therefore, a variety of band-gap narrowing approaches for this compound have been recently proposed, including bismuth doping. In this work, Bi-doped NaTaO3 with a nanocubic morphology has been obtained through a simple molten salt method, in order that Bi3+-Ta5+ atomic substitutions promote the formation of midgap electronic states which allow the absorption of light from the simulated sunlight spectrum (AM 1.5G). X-ray diffraction results reveal that the orthorhombic perovskite structure of NaTaO3 undergoes a structural transition to pseudocubic upon low-concentration (0.5-4 mol%) Bi-doping. Accordingly, the Bi-doped photocatalysts present considerable H2 evolution under simulated sunlight, whereas pristine NaTaO3 exhibits negligible activity in these conditions. The highest H2 evolution rates are obtained with 3 mol% Bi-doped NaTaO3, as a possible consequence of the conjunction between the narrowed band gap of 3.6 eV with the rectified Ta-O-Ta bond angles in the pseudocubic lattice. Moreover, the photocatalytic activity is further improved and kept stable for 110h of reaction after Ni co-catalysts are loaded onto Bi-doped NaTaO3 by magnetron sputtering deposition, in order that the nanosized Ni particles may provide abundant surface reaction sites for the evolution of H2.Em vista do cenário global de crescentes preocupações ambientais a respeito da atual dependência em combustíveis fósseis, a divisão fotocatalítica da água tem sido considerada uma das mais promissoras estratégias para a produção limpa de hidrogênio (H2) a partir da água e da luz solar. Apesar dos avanços recentes, observa-se que poucos materiais podem ser aplicados de forma eficiente como fotocatalisadores para esta reação. Neste contexto, o tantalato de sódio (NaTaO3) mostra-se altamente ativo para a evolução de H2, ainda que sua larga banda proibida de 4.0 eV impeça sua aplicação prática sob luz solar. Portanto, diversos métodos para o estreitamento desta banda proibida tem sido recentemente propostos, sendo um destes a dopagem com bismuto. Neste trabalho, NaTaO3 dopado com Bi foi produzido de forma simples pelo método de sal fundido, de modo que a substituição atômica Bi3+-Ta5+ promove a formação de estados eletrônicos na região da banda proibida, permitindo assim a absorção de luz solar simulada (espectro AM 1.5G). Resultados de difração de raios-X revelam que a estrutura da perovskita ortorrômbica, característica do NaTaO3 puro, se converte para uma perovskita pseudocúbica sob baixas concentrações do dopante (0.5-4 mol% Bi). Como consequência destas modificações, o fotocatalisador dopado com Bi apresenta uma significativa evolução de H2 sob luz solar simulada, em contraste com a atividade nula do NaTaO3 puro, sob estas mesmas condições. As mais altas taxas de produção de hidrogênio foram obtidas com NaTaO3 dopado a 3 mol% Bi, possivelmente como resultado conjunto do band gap de 3.6 eV com os ângulos Ta-O-Ta retificados na rede pseudocúbica. Subsequentemente, a atividade catalítica é potencializada e se mantém estável por 110h após a deposição do cocatalisador Ni por pulverização catódica, evidenciando que as nanopartículas de Ni provém abundantes sítios ativos para a evolução de H2 na superfície do NaTaO3 dopado com Bi.Biblioteca Digitais de Teses e Dissertações da USPGonçalves, Renato VitalinoAlves, Gustavo Andrade Silva2021-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76132/tde-03092021-154745/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-06T12:43:02Zoai:teses.usp.br:tde-03092021-154745Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-06T12:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions Fotocatalisadores de NaTaO3 dopado com Bi para a produção de hidrogênio sob luz solar simulada: diminuição da banda proibida e transições estruturais |
title |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions |
spellingShingle |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions Alves, Gustavo Andrade Silva Divisão fotocatalítica da água Dopagem Doping Phase transition Photocatalytic water splitting Transição de fase |
title_short |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions |
title_full |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions |
title_fullStr |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions |
title_full_unstemmed |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions |
title_sort |
Bi-doped NaTaO3 photocatalysts for hydrogen production under simulated sunlight: band gap narrowing and structural transitions |
author |
Alves, Gustavo Andrade Silva |
author_facet |
Alves, Gustavo Andrade Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonçalves, Renato Vitalino |
dc.contributor.author.fl_str_mv |
Alves, Gustavo Andrade Silva |
dc.subject.por.fl_str_mv |
Divisão fotocatalítica da água Dopagem Doping Phase transition Photocatalytic water splitting Transição de fase |
topic |
Divisão fotocatalítica da água Dopagem Doping Phase transition Photocatalytic water splitting Transição de fase |
description |
In the global scenario of increasing environmental concerns over the dependence on fossil fuels, photocatalytic water splitting has been regarded as a promising method for the clean production of hydrogen fuel (H2) from water and sunlight. Despite recent advancements, only a few materials can be efficiently applied as photocatalysts for this reaction. In this context, sodium tantalate (NaTaO3) is highly active for H2 evolution, although the wide band gap of 4.0 eV precludes its practical application for solar water splitting. Therefore, a variety of band-gap narrowing approaches for this compound have been recently proposed, including bismuth doping. In this work, Bi-doped NaTaO3 with a nanocubic morphology has been obtained through a simple molten salt method, in order that Bi3+-Ta5+ atomic substitutions promote the formation of midgap electronic states which allow the absorption of light from the simulated sunlight spectrum (AM 1.5G). X-ray diffraction results reveal that the orthorhombic perovskite structure of NaTaO3 undergoes a structural transition to pseudocubic upon low-concentration (0.5-4 mol%) Bi-doping. Accordingly, the Bi-doped photocatalysts present considerable H2 evolution under simulated sunlight, whereas pristine NaTaO3 exhibits negligible activity in these conditions. The highest H2 evolution rates are obtained with 3 mol% Bi-doped NaTaO3, as a possible consequence of the conjunction between the narrowed band gap of 3.6 eV with the rectified Ta-O-Ta bond angles in the pseudocubic lattice. Moreover, the photocatalytic activity is further improved and kept stable for 110h of reaction after Ni co-catalysts are loaded onto Bi-doped NaTaO3 by magnetron sputtering deposition, in order that the nanosized Ni particles may provide abundant surface reaction sites for the evolution of H2. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-03092021-154745/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-03092021-154745/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256647581302784 |