Mudanças de opinião em redes complexas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032013-103856/ |
Resumo: | Nos últimos anos, uma míriade de modelos de propagação de opinião foram propostos, motivados pelo interesse crescente dos físicos por problemas interdisciplinares tanto em sociologia, quanto em economia e biologia. Um dos objetivos desse trabalho é unificar alguns desses modelos em uma mesma formulação. Para isso, generalizamos a noção de confiança limitada para o que chamamos de regras de confiança, que podem ser interpretadas como a introdução de viéses ou preconceitos nas interações de agentes com opiniões distintas. Munidos dessa formulação, nos propusemos a estudar como modelos que promovem localmente conformidade (o que está de acordo com experimentos para grupos pequenos conduzidos por psicólogos), poderiam gerar diversidade globalmente (explicando a persistência de pontos de vista distintos em sociedades, por exemplo). Nós estudamos o campo médio do modelo do votante e de variantes do modelo Sznajd. Aplicando ferramentas de sistemas dinâmicos, conseguimos resolver analiticamente o comportamento qualitativo dos modelos na ausência de ruído e desenvolvemos uma teoria de perturbação para o modelo Sznajd com ruído infinitesimal, que nos forneceu um retrato parcial do comportamento na presença de ruído. Na ausência de ruído, chegamos a conclusão que o modelo do votante se comporta de maneira completamente diferente, enquanto que os outros modelos tem essencialmente o mesmo comportamento. Também fizemos simulações em redes Barabási-Albert e Watts-Strogatz para os modelos votante e Sznajd e, em colaboração com o grupo de pesquisa do Institute for Complex Systems and Mathematical Biology da Universidade de Aberdeen, estudamos um modelo de biodiversidade que pode ser encarado como uma variante do modelo do votante em uma rede quadrada. As nossas conclusões apontam que os resultados de campo médio podem ser compreendidos através de conexões com teoria de grafos e que os diversos modelos simulados se comportam em um certo sentido da mesma maneira, reforçando a idéia de universalidade entre eles (na verdade é essencial que existam aspectos universais no comportamento humano para que a modelagem de sistemas sociais seja factível, dadas as dificuldades óbvias de se construir um modelo realista para uma pessoa ou uma sociedade). Grosso modo, em todos os sistemas estudados, a coexistência ou não de pontos de vista diferentes parece depender mais crucialmente da rede e do tipo de regra de confiança, do que de outros detalhes específicos do modelo. |
id |
USP_c89e565c171703995b8a8284b000db47 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11032013-103856 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Mudanças de opinião em redes complexasOpinion propagation in scale free networksComputational PhysicsDinâmica EstocásticaDynamical SystemsFísica ComputacionalFísica TeóricaMétodos de PerturbaçãoPerturbationSistemas DinâmicosSociofísicaSociophysicsStochastic DynamicsTheoretical PhysicsNos últimos anos, uma míriade de modelos de propagação de opinião foram propostos, motivados pelo interesse crescente dos físicos por problemas interdisciplinares tanto em sociologia, quanto em economia e biologia. Um dos objetivos desse trabalho é unificar alguns desses modelos em uma mesma formulação. Para isso, generalizamos a noção de confiança limitada para o que chamamos de regras de confiança, que podem ser interpretadas como a introdução de viéses ou preconceitos nas interações de agentes com opiniões distintas. Munidos dessa formulação, nos propusemos a estudar como modelos que promovem localmente conformidade (o que está de acordo com experimentos para grupos pequenos conduzidos por psicólogos), poderiam gerar diversidade globalmente (explicando a persistência de pontos de vista distintos em sociedades, por exemplo). Nós estudamos o campo médio do modelo do votante e de variantes do modelo Sznajd. Aplicando ferramentas de sistemas dinâmicos, conseguimos resolver analiticamente o comportamento qualitativo dos modelos na ausência de ruído e desenvolvemos uma teoria de perturbação para o modelo Sznajd com ruído infinitesimal, que nos forneceu um retrato parcial do comportamento na presença de ruído. Na ausência de ruído, chegamos a conclusão que o modelo do votante se comporta de maneira completamente diferente, enquanto que os outros modelos tem essencialmente o mesmo comportamento. Também fizemos simulações em redes Barabási-Albert e Watts-Strogatz para os modelos votante e Sznajd e, em colaboração com o grupo de pesquisa do Institute for Complex Systems and Mathematical Biology da Universidade de Aberdeen, estudamos um modelo de biodiversidade que pode ser encarado como uma variante do modelo do votante em uma rede quadrada. As nossas conclusões apontam que os resultados de campo médio podem ser compreendidos através de conexões com teoria de grafos e que os diversos modelos simulados se comportam em um certo sentido da mesma maneira, reforçando a idéia de universalidade entre eles (na verdade é essencial que existam aspectos universais no comportamento humano para que a modelagem de sistemas sociais seja factível, dadas as dificuldades óbvias de se construir um modelo realista para uma pessoa ou uma sociedade). Grosso modo, em todos os sistemas estudados, a coexistência ou não de pontos de vista diferentes parece depender mais crucialmente da rede e do tipo de regra de confiança, do que de outros detalhes específicos do modelo.In the recent years, a great number of opinion propagation models were proposed, motivated by the increasing interest among physicists in interdisciplinary problems, not only in sociology, but also in economics and biology. One of the goals of this work is to unify some of these models under a same formulation. In order to do that, we generalized the notion of bounded confidence to what we called confidence rules, that can be interpreted as the introduction of biases and prejudices in the interactions among agents holding differing points of view. Using this formulation, we decided to study how models that locally breed conformity (what is in accordance with experiments conducted by psichologists for small groups) could sustain diversity globally (explaining the persistence of different points of view in societies, for example). We studied the mean field version of the voter model and of variants of the Sznajd model. We used dynamical systems techniques and were able to solve analytically the qualitative behaviour of the models in the absence of noise and developed a perturbation theory for the Sznajd model with infinitesimal noise, that yielded a partial picture of the behaviour with noise. In the absence of noise, we found that the voter model has a completely different behaviour, while the other models have essentially the same behaviour. We also did simulations in Barabási-Albert and Watts-Strogatz networks for the voter and the Sznajd models and we collaborated with the research group of the Institute for Complex Systems and Mathematical Biology from the University of Aberdeen, studying a biodiversity model that can be seen as a modification of the voter model in a square lattice. Our conclusions point that the mean field results can be understood through connections with graph theory problems and that the different models that were simulated, in some sense, have the same behaviour, reinforcing the idea of universality for these models (due to the obvious difficulties in modelling human beings in a reliable and realistic way, some degree of universality in human behaviour is actually essential, in order for social modelling to be feasible). Roughly speaking, in all the systems that were studied, the coexistence or not of differing opinions, seems to depend more strongly on the network and on the type of confidence rule used, than in other specific details of the model.Biblioteca Digitais de Teses e Dissertações da USPPrado, Carmen Pimentel Cintra doTimpanaro, André Martin2012-10-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032013-103856/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:02Zoai:teses.usp.br:tde-11032013-103856Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Mudanças de opinião em redes complexas Opinion propagation in scale free networks |
title |
Mudanças de opinião em redes complexas |
spellingShingle |
Mudanças de opinião em redes complexas Timpanaro, André Martin Computational Physics Dinâmica Estocástica Dynamical Systems Física Computacional Física Teórica Métodos de Perturbação Perturbation Sistemas Dinâmicos Sociofísica Sociophysics Stochastic Dynamics Theoretical Physics |
title_short |
Mudanças de opinião em redes complexas |
title_full |
Mudanças de opinião em redes complexas |
title_fullStr |
Mudanças de opinião em redes complexas |
title_full_unstemmed |
Mudanças de opinião em redes complexas |
title_sort |
Mudanças de opinião em redes complexas |
author |
Timpanaro, André Martin |
author_facet |
Timpanaro, André Martin |
author_role |
author |
dc.contributor.none.fl_str_mv |
Prado, Carmen Pimentel Cintra do |
dc.contributor.author.fl_str_mv |
Timpanaro, André Martin |
dc.subject.por.fl_str_mv |
Computational Physics Dinâmica Estocástica Dynamical Systems Física Computacional Física Teórica Métodos de Perturbação Perturbation Sistemas Dinâmicos Sociofísica Sociophysics Stochastic Dynamics Theoretical Physics |
topic |
Computational Physics Dinâmica Estocástica Dynamical Systems Física Computacional Física Teórica Métodos de Perturbação Perturbation Sistemas Dinâmicos Sociofísica Sociophysics Stochastic Dynamics Theoretical Physics |
description |
Nos últimos anos, uma míriade de modelos de propagação de opinião foram propostos, motivados pelo interesse crescente dos físicos por problemas interdisciplinares tanto em sociologia, quanto em economia e biologia. Um dos objetivos desse trabalho é unificar alguns desses modelos em uma mesma formulação. Para isso, generalizamos a noção de confiança limitada para o que chamamos de regras de confiança, que podem ser interpretadas como a introdução de viéses ou preconceitos nas interações de agentes com opiniões distintas. Munidos dessa formulação, nos propusemos a estudar como modelos que promovem localmente conformidade (o que está de acordo com experimentos para grupos pequenos conduzidos por psicólogos), poderiam gerar diversidade globalmente (explicando a persistência de pontos de vista distintos em sociedades, por exemplo). Nós estudamos o campo médio do modelo do votante e de variantes do modelo Sznajd. Aplicando ferramentas de sistemas dinâmicos, conseguimos resolver analiticamente o comportamento qualitativo dos modelos na ausência de ruído e desenvolvemos uma teoria de perturbação para o modelo Sznajd com ruído infinitesimal, que nos forneceu um retrato parcial do comportamento na presença de ruído. Na ausência de ruído, chegamos a conclusão que o modelo do votante se comporta de maneira completamente diferente, enquanto que os outros modelos tem essencialmente o mesmo comportamento. Também fizemos simulações em redes Barabási-Albert e Watts-Strogatz para os modelos votante e Sznajd e, em colaboração com o grupo de pesquisa do Institute for Complex Systems and Mathematical Biology da Universidade de Aberdeen, estudamos um modelo de biodiversidade que pode ser encarado como uma variante do modelo do votante em uma rede quadrada. As nossas conclusões apontam que os resultados de campo médio podem ser compreendidos através de conexões com teoria de grafos e que os diversos modelos simulados se comportam em um certo sentido da mesma maneira, reforçando a idéia de universalidade entre eles (na verdade é essencial que existam aspectos universais no comportamento humano para que a modelagem de sistemas sociais seja factível, dadas as dificuldades óbvias de se construir um modelo realista para uma pessoa ou uma sociedade). Grosso modo, em todos os sistemas estudados, a coexistência ou não de pontos de vista diferentes parece depender mais crucialmente da rede e do tipo de regra de confiança, do que de outros detalhes específicos do modelo. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032013-103856/ |
url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11032013-103856/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256856124194816 |