Modelos espaciais de captura-recaptura para populações abertas

Detalhes bibliográficos
Autor(a) principal: Pezzott, George Lucas Moraes
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-02082019-170439/
Resumo: Nesta tese propomos dois modelos espaciais de captura-recaptura para estimação da abundância populacional em população aberta. Os modelos estatísticos propostos ajustam-se a dados obtidos via amostragem de captura-recaptura com marcação individual realizada em diferentes locais dentro do habitat, levando em consideração as taxas de nascimentos e mortes durante o período de estudo e as localizações geográficas das capturas. No primeiro modelo, propomos uma modelagem hierárquica para os tamanhos populacionais locais a fim de obter a distribuição preditiva da abundância populacional para regiões não visitadas pela amostragem. Nesta etapa, uma estrutura para dados zero-inflacionados foi adotada para acomodar situações quando realizam-se amostragens em locais sem a presença da espécie. O segundo modelo proposto leva em consideração o deslocamento dos animais entre os diferentes locais de amostragem, generalizando o primeiro modelo no qual consideramos a permanência dos animais em um mesmo local. Neste caso, tornou-se possível estimar o tamanho da área de vida (movimentação) da espécie além de predizer locais com maiores abundâncias de animais. Em ambos modelos, propomos uma abordagem bayesiana para o processo inferencial e derivamos algoritmos de simples implementação computacional, a partir do uso de técnicas de dados aumentados. As propriedades frequentistas dos estimadores bayesianos foram avaliadas por meio de estudos de simulação e, por fim, estas propostas de modelagem foram aplicadas a três conjuntos de dados reais de aracnídeos.
id USP_c8f2fd4de4fc86ad674a94ee8cd63e10
oai_identifier_str oai:teses.usp.br:tde-02082019-170439
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos espaciais de captura-recaptura para populações abertasSpatial capture-recapture models for open populationsAnálise bayesianaBayesian analysisModelos de captura-recaptura espacialOpen populationPopulação abertaSpatial capture-recapture modelsNesta tese propomos dois modelos espaciais de captura-recaptura para estimação da abundância populacional em população aberta. Os modelos estatísticos propostos ajustam-se a dados obtidos via amostragem de captura-recaptura com marcação individual realizada em diferentes locais dentro do habitat, levando em consideração as taxas de nascimentos e mortes durante o período de estudo e as localizações geográficas das capturas. No primeiro modelo, propomos uma modelagem hierárquica para os tamanhos populacionais locais a fim de obter a distribuição preditiva da abundância populacional para regiões não visitadas pela amostragem. Nesta etapa, uma estrutura para dados zero-inflacionados foi adotada para acomodar situações quando realizam-se amostragens em locais sem a presença da espécie. O segundo modelo proposto leva em consideração o deslocamento dos animais entre os diferentes locais de amostragem, generalizando o primeiro modelo no qual consideramos a permanência dos animais em um mesmo local. Neste caso, tornou-se possível estimar o tamanho da área de vida (movimentação) da espécie além de predizer locais com maiores abundâncias de animais. Em ambos modelos, propomos uma abordagem bayesiana para o processo inferencial e derivamos algoritmos de simples implementação computacional, a partir do uso de técnicas de dados aumentados. As propriedades frequentistas dos estimadores bayesianos foram avaliadas por meio de estudos de simulação e, por fim, estas propostas de modelagem foram aplicadas a três conjuntos de dados reais de aracnídeos.In this thesis we propose two spatial capture-recapture models for estimation of population abundance in the open population. The proposed statistical models conform to data obtained through individual tag capture-recapture sampling performed in different areas within the habitat, taking into account the rates of births and deaths during the study period and the geographical locations of the catches. In the first model, we propose a hierarchical modeling for local population sizes in order to obtain the predictive distribution of population abundance for regions not visited by sampling. In this step, a structure for zero-inflated data was adopted to accommodate situations when sampling is performed in areas without the presence of the species. The second proposed model takes into account the movement of the animals among the different sampling areas, generalizing the first model in which we consider the permanence of the animals in the same area. In this case, it became possible to estimate the size of the area of movement of the species and to predict areas with higher abundances of animals. In both models, we propose a Bayesian approach to the inferential process and derive algorithms from simple computational implementation, from the use of augmented data techniques. The frequentist properties of the Bayesian estimators were evaluated by simulation studies and, finally, these modeling proposals were applied to three real data sets of arachnids.Biblioteca Digitais de Teses e Dissertações da USPSalasar, Luis Ernesto BuenoPezzott, George Lucas Moraes2018-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/104/104131/tde-02082019-170439/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-08-20T23:15:44Zoai:teses.usp.br:tde-02082019-170439Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-08-20T23:15:44Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos espaciais de captura-recaptura para populações abertas
Spatial capture-recapture models for open populations
title Modelos espaciais de captura-recaptura para populações abertas
spellingShingle Modelos espaciais de captura-recaptura para populações abertas
Pezzott, George Lucas Moraes
Análise bayesiana
Bayesian analysis
Modelos de captura-recaptura espacial
Open population
População aberta
Spatial capture-recapture models
title_short Modelos espaciais de captura-recaptura para populações abertas
title_full Modelos espaciais de captura-recaptura para populações abertas
title_fullStr Modelos espaciais de captura-recaptura para populações abertas
title_full_unstemmed Modelos espaciais de captura-recaptura para populações abertas
title_sort Modelos espaciais de captura-recaptura para populações abertas
author Pezzott, George Lucas Moraes
author_facet Pezzott, George Lucas Moraes
author_role author
dc.contributor.none.fl_str_mv Salasar, Luis Ernesto Bueno
dc.contributor.author.fl_str_mv Pezzott, George Lucas Moraes
dc.subject.por.fl_str_mv Análise bayesiana
Bayesian analysis
Modelos de captura-recaptura espacial
Open population
População aberta
Spatial capture-recapture models
topic Análise bayesiana
Bayesian analysis
Modelos de captura-recaptura espacial
Open population
População aberta
Spatial capture-recapture models
description Nesta tese propomos dois modelos espaciais de captura-recaptura para estimação da abundância populacional em população aberta. Os modelos estatísticos propostos ajustam-se a dados obtidos via amostragem de captura-recaptura com marcação individual realizada em diferentes locais dentro do habitat, levando em consideração as taxas de nascimentos e mortes durante o período de estudo e as localizações geográficas das capturas. No primeiro modelo, propomos uma modelagem hierárquica para os tamanhos populacionais locais a fim de obter a distribuição preditiva da abundância populacional para regiões não visitadas pela amostragem. Nesta etapa, uma estrutura para dados zero-inflacionados foi adotada para acomodar situações quando realizam-se amostragens em locais sem a presença da espécie. O segundo modelo proposto leva em consideração o deslocamento dos animais entre os diferentes locais de amostragem, generalizando o primeiro modelo no qual consideramos a permanência dos animais em um mesmo local. Neste caso, tornou-se possível estimar o tamanho da área de vida (movimentação) da espécie além de predizer locais com maiores abundâncias de animais. Em ambos modelos, propomos uma abordagem bayesiana para o processo inferencial e derivamos algoritmos de simples implementação computacional, a partir do uso de técnicas de dados aumentados. As propriedades frequentistas dos estimadores bayesianos foram avaliadas por meio de estudos de simulação e, por fim, estas propostas de modelagem foram aplicadas a três conjuntos de dados reais de aracnídeos.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/104/104131/tde-02082019-170439/
url http://www.teses.usp.br/teses/disponiveis/104/104131/tde-02082019-170439/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256567008722944