Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil

Detalhes bibliográficos
Autor(a) principal: Nascimento, Claudia Maria
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/
Resumo: Soil health is a major challenge in the 21st Century. Tropical regions are the ones with the strongest expansion in agricultural lands. Therefore, novel researches on the soil degradation process are imperative to prevent damages to social and environmental dynamics. The main goal of this research was to generate a Soil Degradation Index based environment co-variables acquired by remote sensing and processed with machine learning. The work was developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we calibrated pixel images and generated thematic maps of clay, and cation exchangeable capacity, CEC. Organic matter was also determined but used for validation and not a co- variable. The specialization was performed using a random forest algorithm. Other co- variables were determined such as land use. The k-means clustering algorithm was used to overlay all variables including historical data of rainfall and surface temperature as well as terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low to 5, very high levels of degradation). Finally, the model was validated using OM. There was an important relationship between the SDI and the spectral surface reflectance obtained by Landsat. Locations with less OM presented a higher degradation. Therefore, integrating multitemporal remote sensing data and environmental variables proved to be effective to assist the SDI, which allows for land use decision-making and public policies.
id USP_c9c78cf878eeb3be450db371010830c6
oai_identifier_str oai:teses.usp.br:tde-11052022-145143
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, BrazilDegradação do solo determinada por imagens de satélite temporais e variáveis ambientais no Estado de São Paulo, BrasilDegradação do soloDigital soil mappingImagens temporais de satéliteLandsatLandsatMapeamento digital do soloMonitoringQualidade do soloRemote sensingSensoriamento remotoSoil degradationSoil qualityTime-series satellite imagesSoil health is a major challenge in the 21st Century. Tropical regions are the ones with the strongest expansion in agricultural lands. Therefore, novel researches on the soil degradation process are imperative to prevent damages to social and environmental dynamics. The main goal of this research was to generate a Soil Degradation Index based environment co-variables acquired by remote sensing and processed with machine learning. The work was developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we calibrated pixel images and generated thematic maps of clay, and cation exchangeable capacity, CEC. Organic matter was also determined but used for validation and not a co- variable. The specialization was performed using a random forest algorithm. Other co- variables were determined such as land use. The k-means clustering algorithm was used to overlay all variables including historical data of rainfall and surface temperature as well as terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low to 5, very high levels of degradation). Finally, the model was validated using OM. There was an important relationship between the SDI and the spectral surface reflectance obtained by Landsat. Locations with less OM presented a higher degradation. Therefore, integrating multitemporal remote sensing data and environmental variables proved to be effective to assist the SDI, which allows for land use decision-making and public policies.A saúde do solo é um grande desafio do século XXI. As regiões tropicais são as que apresentam maior expansão em terras agrícolas. Portanto, novas pesquisas sobre o processo de degradação do solo são imprescindíveis para prevenir danos à dinâmica social e ambiental. O objetivo principal deste trabalho foi gerar um Índice de Degradação do Solo em uma região tropical com base nos fatores que o afetam, em uma região tropical com base nos fatores que o afetam A metodologia seguiu os passos de um trabalho já desenvolvido para uma pequena área do interior do Estado. Coletamos imagens da área, obtidas por uma série temporal de imagens de satélite Landsat (1985 a 2019) e determinamos as áreas com solo exposto pela metodologia Geospatial Soil Sensing System. Amostras de solo (0-20 cm) foram coletadas para realizar a espacialização dos atributos do solo por meio do algoritmo de Random Forest. Dados climáticos médios foram obtidos para o período de análise, usando o conjunto de dados CHIRPS para gerar as informações médias históricas sobre os anos de estudo. A temperatura da superfície foi determinada com base nas bandas térmicas Landsat 5 e 8. Usando o modelo de elevação, outros dados de terreno foram obtidos, como fator LS e Slope. Todas essas variáveis foram sobrepostas pelo algoritmo de agrupamento k-means, normalizando-as para uma forma adimensional a fim de gerar um Índice de Degradação do Solo (SDI) (valores de 1, muito baixo a 5, níveis muito altos de degradação). A matéria orgânica (MO) foi utilizada para validar o modelo. Houve uma relação importante entre o SDI e a refletância espectral de superfície exposta do solo, obtida pelo Landsat. Os resultados mostraram que quanto menor a quantidade de OM, maior o nível de degradação. Portanto, o método utilizando dados de sensoriamento remoto multitemporal e variáveis ambientais mostrou-se satisfatório para atender a SDI, que permite a tomada de decisões sobre o uso do solo e políticas públicas.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloNascimento, Claudia Maria2022-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-05-12T13:56:39Zoai:teses.usp.br:tde-11052022-145143Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-12T13:56:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
Degradação do solo determinada por imagens de satélite temporais e variáveis ambientais no Estado de São Paulo, Brasil
title Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
spellingShingle Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
Nascimento, Claudia Maria
Degradação do solo
Digital soil mapping
Imagens temporais de satélite
Landsat
Landsat
Mapeamento digital do solo
Monitoring
Qualidade do solo
Remote sensing
Sensoriamento remoto
Soil degradation
Soil quality
Time-series satellite images
title_short Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
title_full Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
title_fullStr Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
title_full_unstemmed Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
title_sort Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
author Nascimento, Claudia Maria
author_facet Nascimento, Claudia Maria
author_role author
dc.contributor.none.fl_str_mv Dematte, Jose Alexandre Melo
dc.contributor.author.fl_str_mv Nascimento, Claudia Maria
dc.subject.por.fl_str_mv Degradação do solo
Digital soil mapping
Imagens temporais de satélite
Landsat
Landsat
Mapeamento digital do solo
Monitoring
Qualidade do solo
Remote sensing
Sensoriamento remoto
Soil degradation
Soil quality
Time-series satellite images
topic Degradação do solo
Digital soil mapping
Imagens temporais de satélite
Landsat
Landsat
Mapeamento digital do solo
Monitoring
Qualidade do solo
Remote sensing
Sensoriamento remoto
Soil degradation
Soil quality
Time-series satellite images
description Soil health is a major challenge in the 21st Century. Tropical regions are the ones with the strongest expansion in agricultural lands. Therefore, novel researches on the soil degradation process are imperative to prevent damages to social and environmental dynamics. The main goal of this research was to generate a Soil Degradation Index based environment co-variables acquired by remote sensing and processed with machine learning. The work was developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we calibrated pixel images and generated thematic maps of clay, and cation exchangeable capacity, CEC. Organic matter was also determined but used for validation and not a co- variable. The specialization was performed using a random forest algorithm. Other co- variables were determined such as land use. The k-means clustering algorithm was used to overlay all variables including historical data of rainfall and surface temperature as well as terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low to 5, very high levels of degradation). Finally, the model was validated using OM. There was an important relationship between the SDI and the spectral surface reflectance obtained by Landsat. Locations with less OM presented a higher degradation. Therefore, integrating multitemporal remote sensing data and environmental variables proved to be effective to assist the SDI, which allows for land use decision-making and public policies.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/
url https://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256863338397696