Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/ |
Resumo: | Soil health is a major challenge in the 21st Century. Tropical regions are the ones with the strongest expansion in agricultural lands. Therefore, novel researches on the soil degradation process are imperative to prevent damages to social and environmental dynamics. The main goal of this research was to generate a Soil Degradation Index based environment co-variables acquired by remote sensing and processed with machine learning. The work was developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we calibrated pixel images and generated thematic maps of clay, and cation exchangeable capacity, CEC. Organic matter was also determined but used for validation and not a co- variable. The specialization was performed using a random forest algorithm. Other co- variables were determined such as land use. The k-means clustering algorithm was used to overlay all variables including historical data of rainfall and surface temperature as well as terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low to 5, very high levels of degradation). Finally, the model was validated using OM. There was an important relationship between the SDI and the spectral surface reflectance obtained by Landsat. Locations with less OM presented a higher degradation. Therefore, integrating multitemporal remote sensing data and environmental variables proved to be effective to assist the SDI, which allows for land use decision-making and public policies. |
id |
USP_c9c78cf878eeb3be450db371010830c6 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11052022-145143 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, BrazilDegradação do solo determinada por imagens de satélite temporais e variáveis ambientais no Estado de São Paulo, BrasilDegradação do soloDigital soil mappingImagens temporais de satéliteLandsatLandsatMapeamento digital do soloMonitoringQualidade do soloRemote sensingSensoriamento remotoSoil degradationSoil qualityTime-series satellite imagesSoil health is a major challenge in the 21st Century. Tropical regions are the ones with the strongest expansion in agricultural lands. Therefore, novel researches on the soil degradation process are imperative to prevent damages to social and environmental dynamics. The main goal of this research was to generate a Soil Degradation Index based environment co-variables acquired by remote sensing and processed with machine learning. The work was developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we calibrated pixel images and generated thematic maps of clay, and cation exchangeable capacity, CEC. Organic matter was also determined but used for validation and not a co- variable. The specialization was performed using a random forest algorithm. Other co- variables were determined such as land use. The k-means clustering algorithm was used to overlay all variables including historical data of rainfall and surface temperature as well as terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low to 5, very high levels of degradation). Finally, the model was validated using OM. There was an important relationship between the SDI and the spectral surface reflectance obtained by Landsat. Locations with less OM presented a higher degradation. Therefore, integrating multitemporal remote sensing data and environmental variables proved to be effective to assist the SDI, which allows for land use decision-making and public policies.A saúde do solo é um grande desafio do século XXI. As regiões tropicais são as que apresentam maior expansão em terras agrícolas. Portanto, novas pesquisas sobre o processo de degradação do solo são imprescindíveis para prevenir danos à dinâmica social e ambiental. O objetivo principal deste trabalho foi gerar um Índice de Degradação do Solo em uma região tropical com base nos fatores que o afetam, em uma região tropical com base nos fatores que o afetam A metodologia seguiu os passos de um trabalho já desenvolvido para uma pequena área do interior do Estado. Coletamos imagens da área, obtidas por uma série temporal de imagens de satélite Landsat (1985 a 2019) e determinamos as áreas com solo exposto pela metodologia Geospatial Soil Sensing System. Amostras de solo (0-20 cm) foram coletadas para realizar a espacialização dos atributos do solo por meio do algoritmo de Random Forest. Dados climáticos médios foram obtidos para o período de análise, usando o conjunto de dados CHIRPS para gerar as informações médias históricas sobre os anos de estudo. A temperatura da superfície foi determinada com base nas bandas térmicas Landsat 5 e 8. Usando o modelo de elevação, outros dados de terreno foram obtidos, como fator LS e Slope. Todas essas variáveis foram sobrepostas pelo algoritmo de agrupamento k-means, normalizando-as para uma forma adimensional a fim de gerar um Índice de Degradação do Solo (SDI) (valores de 1, muito baixo a 5, níveis muito altos de degradação). A matéria orgânica (MO) foi utilizada para validar o modelo. Houve uma relação importante entre o SDI e a refletância espectral de superfície exposta do solo, obtida pelo Landsat. Os resultados mostraram que quanto menor a quantidade de OM, maior o nível de degradação. Portanto, o método utilizando dados de sensoriamento remoto multitemporal e variáveis ambientais mostrou-se satisfatório para atender a SDI, que permite a tomada de decisões sobre o uso do solo e políticas públicas.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloNascimento, Claudia Maria2022-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-05-12T13:56:39Zoai:teses.usp.br:tde-11052022-145143Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-12T13:56:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil Degradação do solo determinada por imagens de satélite temporais e variáveis ambientais no Estado de São Paulo, Brasil |
title |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil |
spellingShingle |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil Nascimento, Claudia Maria Degradação do solo Digital soil mapping Imagens temporais de satélite Landsat Landsat Mapeamento digital do solo Monitoring Qualidade do solo Remote sensing Sensoriamento remoto Soil degradation Soil quality Time-series satellite images |
title_short |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil |
title_full |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil |
title_fullStr |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil |
title_full_unstemmed |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil |
title_sort |
Soil degradation determined by temporal satellite images and environmental variables in São Paulo State, Brazil |
author |
Nascimento, Claudia Maria |
author_facet |
Nascimento, Claudia Maria |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
dc.contributor.author.fl_str_mv |
Nascimento, Claudia Maria |
dc.subject.por.fl_str_mv |
Degradação do solo Digital soil mapping Imagens temporais de satélite Landsat Landsat Mapeamento digital do solo Monitoring Qualidade do solo Remote sensing Sensoriamento remoto Soil degradation Soil quality Time-series satellite images |
topic |
Degradação do solo Digital soil mapping Imagens temporais de satélite Landsat Landsat Mapeamento digital do solo Monitoring Qualidade do solo Remote sensing Sensoriamento remoto Soil degradation Soil quality Time-series satellite images |
description |
Soil health is a major challenge in the 21st Century. Tropical regions are the ones with the strongest expansion in agricultural lands. Therefore, novel researches on the soil degradation process are imperative to prevent damages to social and environmental dynamics. The main goal of this research was to generate a Soil Degradation Index based environment co-variables acquired by remote sensing and processed with machine learning. The work was developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we calibrated pixel images and generated thematic maps of clay, and cation exchangeable capacity, CEC. Organic matter was also determined but used for validation and not a co- variable. The specialization was performed using a random forest algorithm. Other co- variables were determined such as land use. The k-means clustering algorithm was used to overlay all variables including historical data of rainfall and surface temperature as well as terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low to 5, very high levels of degradation). Finally, the model was validated using OM. There was an important relationship between the SDI and the spectral surface reflectance obtained by Landsat. Locations with less OM presented a higher degradation. Therefore, integrating multitemporal remote sensing data and environmental variables proved to be effective to assist the SDI, which allows for land use decision-making and public policies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-11052022-145143/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256863338397696 |