Search strategies and phase transition in the Random Boolean satisfiability problem

Detalhes bibliográficos
Autor(a) principal: Bittencourt, Heitor Pascoal de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/
Resumo: The Boolean Satisfiability Problem is the problem of deciding if a given Boolean formula, such as (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) is satisfiable, that is, if there is an assignment of True or False to the logical variables x1, x2 and x3 such that the formula evaluates to True. This was the first problem proved to be NP-complete, which means that there is no known algorithm that can solve it with a running time that scales polynomially with the problem size in a worst-case scenario. Here we study random Boolean formulas with fixed number of variables N and number of clauses M that are generated by choosing randomly the variables that appear in each clause and negating them with probability 1/2. We solve those formulas using a random-walk based, local search algorithm known as WalkSAT. We show that the WalkSAT can be used to study a remarkable property of the ensemble of random Boolean formulas – there is a critical value of the clauses-to-variables ratio M/N that separates satisfiable from unsatisfiable formulas in the limit of large N – and we characterize the critical region, or the sharpness of the transition, for finite N using finite-size scaling. From the perspective of computer science, this transition is important because satisfiable random formulas with the ratio M/N near the transition point are hard to solve, in the sense that WalkSAT requires much more time to find their solutions than in the case that ratio is far from the critical region. We show that a collective search strategy where several WalkSATs run in parallel and halt when one of them finds the solution results in a sub-linear speedup, that is, the speedup is less than the number of WalkSATs used in the collective search.
id USP_ca34250caa061d47826567cf13c27d19
oai_identifier_str oai:teses.usp.br:tde-02092021-162034
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Search strategies and phase transition in the Random Boolean satisfiability problemEstratégias de busca e transição de fase no problema da satisfatibilidade Booliana aleatórioAlgoritmos de busca localBoolean satisfiability problemLocal search algorithmsNP-complete problemPhase transitionsProblema de satisfatibilidade boolianaProblema NP-completoProblemas aleatóriosRandom problemsTransição de faseThe Boolean Satisfiability Problem is the problem of deciding if a given Boolean formula, such as (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) is satisfiable, that is, if there is an assignment of True or False to the logical variables x1, x2 and x3 such that the formula evaluates to True. This was the first problem proved to be NP-complete, which means that there is no known algorithm that can solve it with a running time that scales polynomially with the problem size in a worst-case scenario. Here we study random Boolean formulas with fixed number of variables N and number of clauses M that are generated by choosing randomly the variables that appear in each clause and negating them with probability 1/2. We solve those formulas using a random-walk based, local search algorithm known as WalkSAT. We show that the WalkSAT can be used to study a remarkable property of the ensemble of random Boolean formulas – there is a critical value of the clauses-to-variables ratio M/N that separates satisfiable from unsatisfiable formulas in the limit of large N – and we characterize the critical region, or the sharpness of the transition, for finite N using finite-size scaling. From the perspective of computer science, this transition is important because satisfiable random formulas with the ratio M/N near the transition point are hard to solve, in the sense that WalkSAT requires much more time to find their solutions than in the case that ratio is far from the critical region. We show that a collective search strategy where several WalkSATs run in parallel and halt when one of them finds the solution results in a sub-linear speedup, that is, the speedup is less than the number of WalkSATs used in the collective search.O problema da satisfatibilidade booliana é o problema de decidir se uma determinada fórmula booliana, como (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) é satisfatível, ou seja, se há uma atribuição de True ou False às variáveis lógicas x1, x2 e x3 de modo que a fórmula seja avaliada como True. Este foi o primeiro problema provado ser NP-completo, o que significa que não há algoritmo conhecido que pode resolvê-lo com um tempo de execução que escale polinomialmente com o tamanho do problema em um cenário de pior caso. Nessa dissertação, estudamos fórmulas boolianas aleatórias com número fixo de variáveis N e número de cláusulas M que são geradas escolhendo aleatoriamente as variáveis que aparecem em cada cláusula e negando-as com probabilidade 1/2. Resolvemos essas fórmulas usando um algoritmo de busca local baseado em passeio aleatório conhecido como WalkSAT. Mostramos que o WalkSAT pode ser usado para estudar uma propriedade notável do conjunto de fórmulas boolianas aleatórias – há um valor crítico da razão entre cláusulas e variáveis M/N que separa as fórmulas satisfatíveis das insatisfatíveis no limite de N grande – e caracterizamos a região crítica, ou a agudeza da transição, para N finito usando a teoria de escala de tamanho finito. Do ponto de vista da ciência da computação, essa transição é importante porque fórmulas aleatórias satisfatíveis com a razão M/N perto do ponto de transição são difíceis de resolver, no sentido que o WalkSAT requer muito mais tempo para encontrar suas soluções do que no caso em essa razão está longe da região crítica. Mostramos que uma estratégia de busca coletiva onde vários WalkSATs rodam em paralelo e param quando um deles encontra a solução resulta em um aumento sublinear da velocidade da busca, ou seja, o aumento de velocidade é menor do que o número de WalkSATs usados na busca coletiva.Biblioteca Digitais de Teses e Dissertações da USPFontanari, Jose FernandoBittencourt, Heitor Pascoal de2021-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T20:34:02Zoai:teses.usp.br:tde-02092021-162034Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T20:34:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Search strategies and phase transition in the Random Boolean satisfiability problem
Estratégias de busca e transição de fase no problema da satisfatibilidade Booliana aleatório
title Search strategies and phase transition in the Random Boolean satisfiability problem
spellingShingle Search strategies and phase transition in the Random Boolean satisfiability problem
Bittencourt, Heitor Pascoal de
Algoritmos de busca local
Boolean satisfiability problem
Local search algorithms
NP-complete problem
Phase transitions
Problema de satisfatibilidade booliana
Problema NP-completo
Problemas aleatórios
Random problems
Transição de fase
title_short Search strategies and phase transition in the Random Boolean satisfiability problem
title_full Search strategies and phase transition in the Random Boolean satisfiability problem
title_fullStr Search strategies and phase transition in the Random Boolean satisfiability problem
title_full_unstemmed Search strategies and phase transition in the Random Boolean satisfiability problem
title_sort Search strategies and phase transition in the Random Boolean satisfiability problem
author Bittencourt, Heitor Pascoal de
author_facet Bittencourt, Heitor Pascoal de
author_role author
dc.contributor.none.fl_str_mv Fontanari, Jose Fernando
dc.contributor.author.fl_str_mv Bittencourt, Heitor Pascoal de
dc.subject.por.fl_str_mv Algoritmos de busca local
Boolean satisfiability problem
Local search algorithms
NP-complete problem
Phase transitions
Problema de satisfatibilidade booliana
Problema NP-completo
Problemas aleatórios
Random problems
Transição de fase
topic Algoritmos de busca local
Boolean satisfiability problem
Local search algorithms
NP-complete problem
Phase transitions
Problema de satisfatibilidade booliana
Problema NP-completo
Problemas aleatórios
Random problems
Transição de fase
description The Boolean Satisfiability Problem is the problem of deciding if a given Boolean formula, such as (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) is satisfiable, that is, if there is an assignment of True or False to the logical variables x1, x2 and x3 such that the formula evaluates to True. This was the first problem proved to be NP-complete, which means that there is no known algorithm that can solve it with a running time that scales polynomially with the problem size in a worst-case scenario. Here we study random Boolean formulas with fixed number of variables N and number of clauses M that are generated by choosing randomly the variables that appear in each clause and negating them with probability 1/2. We solve those formulas using a random-walk based, local search algorithm known as WalkSAT. We show that the WalkSAT can be used to study a remarkable property of the ensemble of random Boolean formulas – there is a critical value of the clauses-to-variables ratio M/N that separates satisfiable from unsatisfiable formulas in the limit of large N – and we characterize the critical region, or the sharpness of the transition, for finite N using finite-size scaling. From the perspective of computer science, this transition is important because satisfiable random formulas with the ratio M/N near the transition point are hard to solve, in the sense that WalkSAT requires much more time to find their solutions than in the case that ratio is far from the critical region. We show that a collective search strategy where several WalkSATs run in parallel and halt when one of them finds the solution results in a sub-linear speedup, that is, the speedup is less than the number of WalkSATs used in the collective search.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256617145335808