Search strategies and phase transition in the Random Boolean satisfiability problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/ |
Resumo: | The Boolean Satisfiability Problem is the problem of deciding if a given Boolean formula, such as (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) is satisfiable, that is, if there is an assignment of True or False to the logical variables x1, x2 and x3 such that the formula evaluates to True. This was the first problem proved to be NP-complete, which means that there is no known algorithm that can solve it with a running time that scales polynomially with the problem size in a worst-case scenario. Here we study random Boolean formulas with fixed number of variables N and number of clauses M that are generated by choosing randomly the variables that appear in each clause and negating them with probability 1/2. We solve those formulas using a random-walk based, local search algorithm known as WalkSAT. We show that the WalkSAT can be used to study a remarkable property of the ensemble of random Boolean formulas – there is a critical value of the clauses-to-variables ratio M/N that separates satisfiable from unsatisfiable formulas in the limit of large N – and we characterize the critical region, or the sharpness of the transition, for finite N using finite-size scaling. From the perspective of computer science, this transition is important because satisfiable random formulas with the ratio M/N near the transition point are hard to solve, in the sense that WalkSAT requires much more time to find their solutions than in the case that ratio is far from the critical region. We show that a collective search strategy where several WalkSATs run in parallel and halt when one of them finds the solution results in a sub-linear speedup, that is, the speedup is less than the number of WalkSATs used in the collective search. |
id |
USP_ca34250caa061d47826567cf13c27d19 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02092021-162034 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Search strategies and phase transition in the Random Boolean satisfiability problemEstratégias de busca e transição de fase no problema da satisfatibilidade Booliana aleatórioAlgoritmos de busca localBoolean satisfiability problemLocal search algorithmsNP-complete problemPhase transitionsProblema de satisfatibilidade boolianaProblema NP-completoProblemas aleatóriosRandom problemsTransição de faseThe Boolean Satisfiability Problem is the problem of deciding if a given Boolean formula, such as (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) is satisfiable, that is, if there is an assignment of True or False to the logical variables x1, x2 and x3 such that the formula evaluates to True. This was the first problem proved to be NP-complete, which means that there is no known algorithm that can solve it with a running time that scales polynomially with the problem size in a worst-case scenario. Here we study random Boolean formulas with fixed number of variables N and number of clauses M that are generated by choosing randomly the variables that appear in each clause and negating them with probability 1/2. We solve those formulas using a random-walk based, local search algorithm known as WalkSAT. We show that the WalkSAT can be used to study a remarkable property of the ensemble of random Boolean formulas – there is a critical value of the clauses-to-variables ratio M/N that separates satisfiable from unsatisfiable formulas in the limit of large N – and we characterize the critical region, or the sharpness of the transition, for finite N using finite-size scaling. From the perspective of computer science, this transition is important because satisfiable random formulas with the ratio M/N near the transition point are hard to solve, in the sense that WalkSAT requires much more time to find their solutions than in the case that ratio is far from the critical region. We show that a collective search strategy where several WalkSATs run in parallel and halt when one of them finds the solution results in a sub-linear speedup, that is, the speedup is less than the number of WalkSATs used in the collective search.O problema da satisfatibilidade booliana é o problema de decidir se uma determinada fórmula booliana, como (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) é satisfatível, ou seja, se há uma atribuição de True ou False às variáveis lógicas x1, x2 e x3 de modo que a fórmula seja avaliada como True. Este foi o primeiro problema provado ser NP-completo, o que significa que não há algoritmo conhecido que pode resolvê-lo com um tempo de execução que escale polinomialmente com o tamanho do problema em um cenário de pior caso. Nessa dissertação, estudamos fórmulas boolianas aleatórias com número fixo de variáveis N e número de cláusulas M que são geradas escolhendo aleatoriamente as variáveis que aparecem em cada cláusula e negando-as com probabilidade 1/2. Resolvemos essas fórmulas usando um algoritmo de busca local baseado em passeio aleatório conhecido como WalkSAT. Mostramos que o WalkSAT pode ser usado para estudar uma propriedade notável do conjunto de fórmulas boolianas aleatórias – há um valor crítico da razão entre cláusulas e variáveis M/N que separa as fórmulas satisfatíveis das insatisfatíveis no limite de N grande – e caracterizamos a região crítica, ou a agudeza da transição, para N finito usando a teoria de escala de tamanho finito. Do ponto de vista da ciência da computação, essa transição é importante porque fórmulas aleatórias satisfatíveis com a razão M/N perto do ponto de transição são difíceis de resolver, no sentido que o WalkSAT requer muito mais tempo para encontrar suas soluções do que no caso em essa razão está longe da região crítica. Mostramos que uma estratégia de busca coletiva onde vários WalkSATs rodam em paralelo e param quando um deles encontra a solução resulta em um aumento sublinear da velocidade da busca, ou seja, o aumento de velocidade é menor do que o número de WalkSATs usados na busca coletiva.Biblioteca Digitais de Teses e Dissertações da USPFontanari, Jose FernandoBittencourt, Heitor Pascoal de2021-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T20:34:02Zoai:teses.usp.br:tde-02092021-162034Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T20:34:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Search strategies and phase transition in the Random Boolean satisfiability problem Estratégias de busca e transição de fase no problema da satisfatibilidade Booliana aleatório |
title |
Search strategies and phase transition in the Random Boolean satisfiability problem |
spellingShingle |
Search strategies and phase transition in the Random Boolean satisfiability problem Bittencourt, Heitor Pascoal de Algoritmos de busca local Boolean satisfiability problem Local search algorithms NP-complete problem Phase transitions Problema de satisfatibilidade booliana Problema NP-completo Problemas aleatórios Random problems Transição de fase |
title_short |
Search strategies and phase transition in the Random Boolean satisfiability problem |
title_full |
Search strategies and phase transition in the Random Boolean satisfiability problem |
title_fullStr |
Search strategies and phase transition in the Random Boolean satisfiability problem |
title_full_unstemmed |
Search strategies and phase transition in the Random Boolean satisfiability problem |
title_sort |
Search strategies and phase transition in the Random Boolean satisfiability problem |
author |
Bittencourt, Heitor Pascoal de |
author_facet |
Bittencourt, Heitor Pascoal de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fontanari, Jose Fernando |
dc.contributor.author.fl_str_mv |
Bittencourt, Heitor Pascoal de |
dc.subject.por.fl_str_mv |
Algoritmos de busca local Boolean satisfiability problem Local search algorithms NP-complete problem Phase transitions Problema de satisfatibilidade booliana Problema NP-completo Problemas aleatórios Random problems Transição de fase |
topic |
Algoritmos de busca local Boolean satisfiability problem Local search algorithms NP-complete problem Phase transitions Problema de satisfatibilidade booliana Problema NP-completo Problemas aleatórios Random problems Transição de fase |
description |
The Boolean Satisfiability Problem is the problem of deciding if a given Boolean formula, such as (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ x3) is satisfiable, that is, if there is an assignment of True or False to the logical variables x1, x2 and x3 such that the formula evaluates to True. This was the first problem proved to be NP-complete, which means that there is no known algorithm that can solve it with a running time that scales polynomially with the problem size in a worst-case scenario. Here we study random Boolean formulas with fixed number of variables N and number of clauses M that are generated by choosing randomly the variables that appear in each clause and negating them with probability 1/2. We solve those formulas using a random-walk based, local search algorithm known as WalkSAT. We show that the WalkSAT can be used to study a remarkable property of the ensemble of random Boolean formulas – there is a critical value of the clauses-to-variables ratio M/N that separates satisfiable from unsatisfiable formulas in the limit of large N – and we characterize the critical region, or the sharpness of the transition, for finite N using finite-size scaling. From the perspective of computer science, this transition is important because satisfiable random formulas with the ratio M/N near the transition point are hard to solve, in the sense that WalkSAT requires much more time to find their solutions than in the case that ratio is far from the critical region. We show that a collective search strategy where several WalkSATs run in parallel and halt when one of them finds the solution results in a sub-linear speedup, that is, the speedup is less than the number of WalkSATs used in the collective search. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02092021-162034/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256617145335808 |