Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/ |
Resumo: | Specific learning disorders (SLD) have a neurobiological origin and are classified according to their specific domains. Developmental dyscalculia (DD) is a SLD with persistent academic impairments in mathematical skills regarding numerical sense, memorization of arithmetic facts, performance or fluency of calculations and mathematical reasoning. The development of efficient diagnostic mechanisms for DD using machine learning techniques has gained significant attention in recent research. Conventionally, the diagnosis of DD involves time-consuming processes, including multiple tests and interviews that extend over weeks or months. However, recent studies have demonstrated the potential for generating classifier models with high performances using psychometric instruments, which can contribute to reducing the complexity of the diagnostic process. This research presents a framework to identify opportunities to the NUMERO Outpatient Clinic protocol using Random Forest for classification and variable ranking analyses. Applying a dimensionality reduction mechanism, a hybrid method combining hierarchical clustering and RF classification, we proposed to eliminate irrelevant variables and, consequently, largely improve model\'s efficiency. Computer simulations present promising results throughout many dataset versions. Our approach holds great potential for efficiently support diagnosing developmental dyscalculia, offering a valuable contribution to the field of cognitive assessment and intervention, while may also be adapted to another psychometric based diagnose. |
id |
USP_ca99c75921cca003c09f41496214adea |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08032024-073933 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Random Forest multiclasse: a diagnostic study of mathematical learning difficultiesRandom Forest multiclasses: um estudo diagnóstico de dificuldades de aprendizagem matemáticaDiagnosisDiagnósticoDificuldade de aprendizagemDiscalculiaDyscalculiaLearning disabilityMatemáticaMathematicsPsicometriaPsychometricsRandom ForestRandom ForestSpecific learning disorders (SLD) have a neurobiological origin and are classified according to their specific domains. Developmental dyscalculia (DD) is a SLD with persistent academic impairments in mathematical skills regarding numerical sense, memorization of arithmetic facts, performance or fluency of calculations and mathematical reasoning. The development of efficient diagnostic mechanisms for DD using machine learning techniques has gained significant attention in recent research. Conventionally, the diagnosis of DD involves time-consuming processes, including multiple tests and interviews that extend over weeks or months. However, recent studies have demonstrated the potential for generating classifier models with high performances using psychometric instruments, which can contribute to reducing the complexity of the diagnostic process. This research presents a framework to identify opportunities to the NUMERO Outpatient Clinic protocol using Random Forest for classification and variable ranking analyses. Applying a dimensionality reduction mechanism, a hybrid method combining hierarchical clustering and RF classification, we proposed to eliminate irrelevant variables and, consequently, largely improve model\'s efficiency. Computer simulations present promising results throughout many dataset versions. Our approach holds great potential for efficiently support diagnosing developmental dyscalculia, offering a valuable contribution to the field of cognitive assessment and intervention, while may also be adapted to another psychometric based diagnose.Os transtornos específicos de aprendizagem (TEA) têm origem neurobiológica e são classificados de acordo com seus domínios específicos. A discalculia do desenvolvimento (DD) é uma TEA com comprometimentos acadêmicos persistentes nas habilidades matemáticas referentes ao sentido numérico, memorização de fatos aritméticos, desempenho ou fluência de cálculos e raciocínio matemático. O desenvolvimento de mecanismos diagnósticos eficientes para Discalculia do Desenvolvimento (DD) utilizando técnicas de aprendizado de máquina tem ganhado atenção significativa em pesquisas recentes. Convencionalmente, o diagnóstico da DD envolve processos demorados, incluindo múltiplos exames e entrevistas que se estendem por semanas ou meses. Entretanto, estudos recentes têm demonstrado o potencial de gerar modelos classificadores com alta acurácia utilizando instrumentos psicométricos, que podem contribuir para a redução da complexidade do processo diagnóstico. Esta pesquisa apresenta um método estruturado cujo objetivo é identificar oportunidades para o protocolo do Ambulatório NUMERO, utilizando Random Forest para análise de classificação e importância de variáveis. Partindo da redução de dimensionalidade, por meio de um método híbrido combinando agrupamento hierárquico e classificação de RF, propusemos eliminar variáveis irrelevantes e, consequentemente, melhorar amplamente a eficiência do classificador. Simulações computacionais apresentam resultados promissores em muitas versões de conjuntos de dados. A abordagem proposta tem grande potencial para suportar eficientemente o diagnóstico de discalculia do desenvolvimento, oferecendo uma valiosa contribuição para o campo da avaliação e intervenção cognitiva, além de ser adaptável a demais diagnósticos que se baseiem em psicometria.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoAugusto, Patrícia Bruniero Franciscato2024-01-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-28T14:31:02Zoai:teses.usp.br:tde-08032024-073933Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-28T14:31:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties Random Forest multiclasses: um estudo diagnóstico de dificuldades de aprendizagem matemática |
title |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties |
spellingShingle |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties Augusto, Patrícia Bruniero Franciscato Diagnosis Diagnóstico Dificuldade de aprendizagem Discalculia Dyscalculia Learning disability Matemática Mathematics Psicometria Psychometrics Random Forest Random Forest |
title_short |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties |
title_full |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties |
title_fullStr |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties |
title_full_unstemmed |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties |
title_sort |
Random Forest multiclasse: a diagnostic study of mathematical learning difficulties |
author |
Augusto, Patrícia Bruniero Franciscato |
author_facet |
Augusto, Patrícia Bruniero Franciscato |
author_role |
author |
dc.contributor.none.fl_str_mv |
Liang, Zhao |
dc.contributor.author.fl_str_mv |
Augusto, Patrícia Bruniero Franciscato |
dc.subject.por.fl_str_mv |
Diagnosis Diagnóstico Dificuldade de aprendizagem Discalculia Dyscalculia Learning disability Matemática Mathematics Psicometria Psychometrics Random Forest Random Forest |
topic |
Diagnosis Diagnóstico Dificuldade de aprendizagem Discalculia Dyscalculia Learning disability Matemática Mathematics Psicometria Psychometrics Random Forest Random Forest |
description |
Specific learning disorders (SLD) have a neurobiological origin and are classified according to their specific domains. Developmental dyscalculia (DD) is a SLD with persistent academic impairments in mathematical skills regarding numerical sense, memorization of arithmetic facts, performance or fluency of calculations and mathematical reasoning. The development of efficient diagnostic mechanisms for DD using machine learning techniques has gained significant attention in recent research. Conventionally, the diagnosis of DD involves time-consuming processes, including multiple tests and interviews that extend over weeks or months. However, recent studies have demonstrated the potential for generating classifier models with high performances using psychometric instruments, which can contribute to reducing the complexity of the diagnostic process. This research presents a framework to identify opportunities to the NUMERO Outpatient Clinic protocol using Random Forest for classification and variable ranking analyses. Applying a dimensionality reduction mechanism, a hybrid method combining hierarchical clustering and RF classification, we proposed to eliminate irrelevant variables and, consequently, largely improve model\'s efficiency. Computer simulations present promising results throughout many dataset versions. Our approach holds great potential for efficiently support diagnosing developmental dyscalculia, offering a valuable contribution to the field of cognitive assessment and intervention, while may also be adapted to another psychometric based diagnose. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/ |
url |
https://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090504386674688 |