Random Forest multiclasse: a diagnostic study of mathematical learning difficulties

Detalhes bibliográficos
Autor(a) principal: Augusto, Patrícia Bruniero Franciscato
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/
Resumo: Specific learning disorders (SLD) have a neurobiological origin and are classified according to their specific domains. Developmental dyscalculia (DD) is a SLD with persistent academic impairments in mathematical skills regarding numerical sense, memorization of arithmetic facts, performance or fluency of calculations and mathematical reasoning. The development of efficient diagnostic mechanisms for DD using machine learning techniques has gained significant attention in recent research. Conventionally, the diagnosis of DD involves time-consuming processes, including multiple tests and interviews that extend over weeks or months. However, recent studies have demonstrated the potential for generating classifier models with high performances using psychometric instruments, which can contribute to reducing the complexity of the diagnostic process. This research presents a framework to identify opportunities to the NUMERO Outpatient Clinic protocol using Random Forest for classification and variable ranking analyses. Applying a dimensionality reduction mechanism, a hybrid method combining hierarchical clustering and RF classification, we proposed to eliminate irrelevant variables and, consequently, largely improve model\'s efficiency. Computer simulations present promising results throughout many dataset versions. Our approach holds great potential for efficiently support diagnosing developmental dyscalculia, offering a valuable contribution to the field of cognitive assessment and intervention, while may also be adapted to another psychometric based diagnose.
id USP_ca99c75921cca003c09f41496214adea
oai_identifier_str oai:teses.usp.br:tde-08032024-073933
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Random Forest multiclasse: a diagnostic study of mathematical learning difficultiesRandom Forest multiclasses: um estudo diagnóstico de dificuldades de aprendizagem matemáticaDiagnosisDiagnósticoDificuldade de aprendizagemDiscalculiaDyscalculiaLearning disabilityMatemáticaMathematicsPsicometriaPsychometricsRandom ForestRandom ForestSpecific learning disorders (SLD) have a neurobiological origin and are classified according to their specific domains. Developmental dyscalculia (DD) is a SLD with persistent academic impairments in mathematical skills regarding numerical sense, memorization of arithmetic facts, performance or fluency of calculations and mathematical reasoning. The development of efficient diagnostic mechanisms for DD using machine learning techniques has gained significant attention in recent research. Conventionally, the diagnosis of DD involves time-consuming processes, including multiple tests and interviews that extend over weeks or months. However, recent studies have demonstrated the potential for generating classifier models with high performances using psychometric instruments, which can contribute to reducing the complexity of the diagnostic process. This research presents a framework to identify opportunities to the NUMERO Outpatient Clinic protocol using Random Forest for classification and variable ranking analyses. Applying a dimensionality reduction mechanism, a hybrid method combining hierarchical clustering and RF classification, we proposed to eliminate irrelevant variables and, consequently, largely improve model\'s efficiency. Computer simulations present promising results throughout many dataset versions. Our approach holds great potential for efficiently support diagnosing developmental dyscalculia, offering a valuable contribution to the field of cognitive assessment and intervention, while may also be adapted to another psychometric based diagnose.Os transtornos específicos de aprendizagem (TEA) têm origem neurobiológica e são classificados de acordo com seus domínios específicos. A discalculia do desenvolvimento (DD) é uma TEA com comprometimentos acadêmicos persistentes nas habilidades matemáticas referentes ao sentido numérico, memorização de fatos aritméticos, desempenho ou fluência de cálculos e raciocínio matemático. O desenvolvimento de mecanismos diagnósticos eficientes para Discalculia do Desenvolvimento (DD) utilizando técnicas de aprendizado de máquina tem ganhado atenção significativa em pesquisas recentes. Convencionalmente, o diagnóstico da DD envolve processos demorados, incluindo múltiplos exames e entrevistas que se estendem por semanas ou meses. Entretanto, estudos recentes têm demonstrado o potencial de gerar modelos classificadores com alta acurácia utilizando instrumentos psicométricos, que podem contribuir para a redução da complexidade do processo diagnóstico. Esta pesquisa apresenta um método estruturado cujo objetivo é identificar oportunidades para o protocolo do Ambulatório NUMERO, utilizando Random Forest para análise de classificação e importância de variáveis. Partindo da redução de dimensionalidade, por meio de um método híbrido combinando agrupamento hierárquico e classificação de RF, propusemos eliminar variáveis irrelevantes e, consequentemente, melhorar amplamente a eficiência do classificador. Simulações computacionais apresentam resultados promissores em muitas versões de conjuntos de dados. A abordagem proposta tem grande potencial para suportar eficientemente o diagnóstico de discalculia do desenvolvimento, oferecendo uma valiosa contribuição para o campo da avaliação e intervenção cognitiva, além de ser adaptável a demais diagnósticos que se baseiem em psicometria.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoAugusto, Patrícia Bruniero Franciscato2024-01-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-03-28T14:31:02Zoai:teses.usp.br:tde-08032024-073933Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-28T14:31:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
Random Forest multiclasses: um estudo diagnóstico de dificuldades de aprendizagem matemática
title Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
spellingShingle Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
Augusto, Patrícia Bruniero Franciscato
Diagnosis
Diagnóstico
Dificuldade de aprendizagem
Discalculia
Dyscalculia
Learning disability
Matemática
Mathematics
Psicometria
Psychometrics
Random Forest
Random Forest
title_short Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
title_full Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
title_fullStr Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
title_full_unstemmed Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
title_sort Random Forest multiclasse: a diagnostic study of mathematical learning difficulties
author Augusto, Patrícia Bruniero Franciscato
author_facet Augusto, Patrícia Bruniero Franciscato
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
dc.contributor.author.fl_str_mv Augusto, Patrícia Bruniero Franciscato
dc.subject.por.fl_str_mv Diagnosis
Diagnóstico
Dificuldade de aprendizagem
Discalculia
Dyscalculia
Learning disability
Matemática
Mathematics
Psicometria
Psychometrics
Random Forest
Random Forest
topic Diagnosis
Diagnóstico
Dificuldade de aprendizagem
Discalculia
Dyscalculia
Learning disability
Matemática
Mathematics
Psicometria
Psychometrics
Random Forest
Random Forest
description Specific learning disorders (SLD) have a neurobiological origin and are classified according to their specific domains. Developmental dyscalculia (DD) is a SLD with persistent academic impairments in mathematical skills regarding numerical sense, memorization of arithmetic facts, performance or fluency of calculations and mathematical reasoning. The development of efficient diagnostic mechanisms for DD using machine learning techniques has gained significant attention in recent research. Conventionally, the diagnosis of DD involves time-consuming processes, including multiple tests and interviews that extend over weeks or months. However, recent studies have demonstrated the potential for generating classifier models with high performances using psychometric instruments, which can contribute to reducing the complexity of the diagnostic process. This research presents a framework to identify opportunities to the NUMERO Outpatient Clinic protocol using Random Forest for classification and variable ranking analyses. Applying a dimensionality reduction mechanism, a hybrid method combining hierarchical clustering and RF classification, we proposed to eliminate irrelevant variables and, consequently, largely improve model\'s efficiency. Computer simulations present promising results throughout many dataset versions. Our approach holds great potential for efficiently support diagnosing developmental dyscalculia, offering a valuable contribution to the field of cognitive assessment and intervention, while may also be adapted to another psychometric based diagnose.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/
url https://www.teses.usp.br/teses/disponiveis/59/59143/tde-08032024-073933/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090504386674688