Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles

Detalhes bibliográficos
Autor(a) principal: Vendite, Alexsander Carvalho
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/43/43134/tde-02072021-174115/
Resumo: Global warming is a huge threat for life on Earth and requires vast efforts to be tackled. It emerges mostly from the enhanced greenhouse effect, which has major contribution from atmospheric CO2. Multiple procedures must be combined to lessen the impact of global warming, such as emission mitigations, development of environmental friendly technologies and atmospheric carbon capture. The theoretical study of the latter is the target of this work. Specifically, when performed by the metal-organic framework ZIF-8 on CO2, H2O, N2, O2 and Ar under atmospheric conditions. ZIF-8 was considered as a nanoparticle to evaluate how much its surface impacts the gas capture in proportion to the bulk. The surface groups were represented as unsaturated Zn atom, 2-methylimidazole or deprotonated 2-methylimidazole. Those options imply on different values of charge for the ZIF-8 nanoparticle as a whole. The study was heavily structured on molecular simulations, such as Classic Metropolis Monte Carlo, Classic Molecular Dynamics and Born-Oppenheimer Molecular Dynamics. Initially, parametrization of the classic force fields and subsequent validation were performed by electronic structure calculations. Afterwards, O2 and Ar were found to have negligible interaction with ZIF-8. When considering pristine gases with ZIF-8, the absorption was only possible with CO2, while the adsorption was dominated by H2O, followed by CO2, in energetic magnitude order. In the explicit competition between gases, the CO2 absorption was greatly decreased when simulated with either H2O or N2. The CO2 adsorption was mostly unchanged by the presence of N2, while it was inhibited when H2O was available. Also, both CO2 uptake and selectivity were enhanced in lower temperatures and higher pressures. The ZIF-8 nanoparticle with more superficial Zn atoms excelled at capturing CO2. Although it was the nanoparticle with the highest charge, increments of charge made by adding protons to the surface sites had no effect on the CO2 capture. The effectiveness of ZIF-8 nanoparticles to capture CO2 decreased as its size grew. From another perspective, absorbed CO2 was compacted by ZIF-8 similarly to low density liquid CO2. Additionally, adsorbed CO2 was structured in a web that resembled solid phase CO2. Those features highlight the importance of the ZIF-8 surface on the CO2 capture and its potential to store compacted CO2. Along with the specific results of gas capture by ZIF-8, this work also aimed to create guidelines on surface conditions treatment of MOFs.
id USP_cb7d8241e66b4fd8fe7e1ad48ad19868
oai_identifier_str oai:teses.usp.br:tde-02072021-174115
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous NanoparticlesEstudos Teóricos de Captura de CO2 em Gás Atmosférico por Nanopartículas PorosasCaptura de CO2CO2 CaptureElectronic StructureEstrutura EletrônicaMOFsMOFsMolecular SimulationNanomaterialNanomaterialSimulação MolecularGlobal warming is a huge threat for life on Earth and requires vast efforts to be tackled. It emerges mostly from the enhanced greenhouse effect, which has major contribution from atmospheric CO2. Multiple procedures must be combined to lessen the impact of global warming, such as emission mitigations, development of environmental friendly technologies and atmospheric carbon capture. The theoretical study of the latter is the target of this work. Specifically, when performed by the metal-organic framework ZIF-8 on CO2, H2O, N2, O2 and Ar under atmospheric conditions. ZIF-8 was considered as a nanoparticle to evaluate how much its surface impacts the gas capture in proportion to the bulk. The surface groups were represented as unsaturated Zn atom, 2-methylimidazole or deprotonated 2-methylimidazole. Those options imply on different values of charge for the ZIF-8 nanoparticle as a whole. The study was heavily structured on molecular simulations, such as Classic Metropolis Monte Carlo, Classic Molecular Dynamics and Born-Oppenheimer Molecular Dynamics. Initially, parametrization of the classic force fields and subsequent validation were performed by electronic structure calculations. Afterwards, O2 and Ar were found to have negligible interaction with ZIF-8. When considering pristine gases with ZIF-8, the absorption was only possible with CO2, while the adsorption was dominated by H2O, followed by CO2, in energetic magnitude order. In the explicit competition between gases, the CO2 absorption was greatly decreased when simulated with either H2O or N2. The CO2 adsorption was mostly unchanged by the presence of N2, while it was inhibited when H2O was available. Also, both CO2 uptake and selectivity were enhanced in lower temperatures and higher pressures. The ZIF-8 nanoparticle with more superficial Zn atoms excelled at capturing CO2. Although it was the nanoparticle with the highest charge, increments of charge made by adding protons to the surface sites had no effect on the CO2 capture. The effectiveness of ZIF-8 nanoparticles to capture CO2 decreased as its size grew. From another perspective, absorbed CO2 was compacted by ZIF-8 similarly to low density liquid CO2. Additionally, adsorbed CO2 was structured in a web that resembled solid phase CO2. Those features highlight the importance of the ZIF-8 surface on the CO2 capture and its potential to store compacted CO2. Along with the specific results of gas capture by ZIF-8, this work also aimed to create guidelines on surface conditions treatment of MOFs.Aquecimento global é uma enorme ameaça para a vida na Terra e requer extensos esforços para ser abrandado. Este emerge principalmente do intensificamento do efeito estufa, cuja maior contribuição é atribuída ao CO2 atmosférico. Múltiplos procedimentos precisam ser combinados para aliviar o impacto do aquecimento global, como redução de emissões, desenvolvimento de tecnologias amigáveis com a natureza e captura de carbono atmosférico. O estudo teórico desta última é o objetivo do trabalho. Em especial, quando feita pela MOF chamada ZIF-8 em gases de CO2, H2O, N2, O2 e Ar sob condições atmosféricas. A ZIF-8 foi construída como uma nanopartícula para avaliar o impacto de sua superfície na captura de gases em proporção com a região interna. Os grupos superficiais foram representados como átomo de Zn insaturado, 2-metilimidazol ou 2-metilimidazol desprotonado. Estas opções implicam em diferentes valores de carga para a nanopartícula de ZIF-8 como um todo. O estudo foi profundamente estruturado em simulações moleculares, como Monte Carlo Metropolis Clássico, Dinâmica Molecular Clássica e Dinâmica Molecular de Born-Oppenheimer. Inicialmente, a parametrização dos campos de força clássicos, com subsequente validação, foram conduzidas por meio de cálculos de estrutura eletrônica. Em seguida, O2 e Ar demonstraram interação desprezível com a ZIF-8. Ao considerar gases puros com a ZIF-8, a absorção foi possível apenas com CO2, enquanto que a adsorção foi dominada por H2O, seguida por CO2, em ordem de magnitude energética. Na competição explícita entre os gases, a absorção de CO2 foi fortemente reduzida quando H2O ou N2 foram simulados conjuntamente. A adsorção de CO2 foi apenas levemente afetada pela presença de N2, enquanto que ela foi inibida quando H2O estava disponível. Além disso, a captação e a seletividade por CO2 foram aumentadas sob menores temperaturas ou maiores pressões. A nanopartícula de ZIF-8 com maior número de átomos de Zn superficiais destacou-se na capacidade de captura de CO2. Apesar de esta ser a nanopartícula de maior carga, incrementos de carga feitos adicionando prótons nos sítios superficiais não demonstraram nenhum efeito na captura de CO2. A efetividade das nanopartículas de ZIF-8 na captura de CO2 decaiu conforme seu tamanho aumentava. De outra perspectiva, CO2 absorvido foi compactado pela ZIF-8 de forma similar à CO2 em fase líquida de baixa densidade. Além disso, CO2 adsorvido estruturou-se em uma rede semelhante à CO2 em estado sólido. Estas observações ressaltam a importância da superfície de ZIF-8 na captura de CO2 e seu potencial de armazenar CO2 compactado. Juntamente com os resultados específicos sobre captura de gases pela ZIF-8, o trabalho atual também buscou estabelecer diretrizes no tratamento de superfícies de MOFs.Biblioteca Digitais de Teses e Dissertações da USPCoutinho, Kaline RabeloVendite, Alexsander Carvalho2021-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-02072021-174115/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-07-14T19:44:02Zoai:teses.usp.br:tde-02072021-174115Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-14T19:44:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
Estudos Teóricos de Captura de CO2 em Gás Atmosférico por Nanopartículas Porosas
title Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
spellingShingle Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
Vendite, Alexsander Carvalho
Captura de CO2
CO2 Capture
Electronic Structure
Estrutura Eletrônica
MOFs
MOFs
Molecular Simulation
Nanomaterial
Nanomaterial
Simulação Molecular
title_short Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
title_full Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
title_fullStr Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
title_full_unstemmed Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
title_sort Theoretical Studies of the CO2 Capture in Atmospheric Gas by Porous Nanoparticles
author Vendite, Alexsander Carvalho
author_facet Vendite, Alexsander Carvalho
author_role author
dc.contributor.none.fl_str_mv Coutinho, Kaline Rabelo
dc.contributor.author.fl_str_mv Vendite, Alexsander Carvalho
dc.subject.por.fl_str_mv Captura de CO2
CO2 Capture
Electronic Structure
Estrutura Eletrônica
MOFs
MOFs
Molecular Simulation
Nanomaterial
Nanomaterial
Simulação Molecular
topic Captura de CO2
CO2 Capture
Electronic Structure
Estrutura Eletrônica
MOFs
MOFs
Molecular Simulation
Nanomaterial
Nanomaterial
Simulação Molecular
description Global warming is a huge threat for life on Earth and requires vast efforts to be tackled. It emerges mostly from the enhanced greenhouse effect, which has major contribution from atmospheric CO2. Multiple procedures must be combined to lessen the impact of global warming, such as emission mitigations, development of environmental friendly technologies and atmospheric carbon capture. The theoretical study of the latter is the target of this work. Specifically, when performed by the metal-organic framework ZIF-8 on CO2, H2O, N2, O2 and Ar under atmospheric conditions. ZIF-8 was considered as a nanoparticle to evaluate how much its surface impacts the gas capture in proportion to the bulk. The surface groups were represented as unsaturated Zn atom, 2-methylimidazole or deprotonated 2-methylimidazole. Those options imply on different values of charge for the ZIF-8 nanoparticle as a whole. The study was heavily structured on molecular simulations, such as Classic Metropolis Monte Carlo, Classic Molecular Dynamics and Born-Oppenheimer Molecular Dynamics. Initially, parametrization of the classic force fields and subsequent validation were performed by electronic structure calculations. Afterwards, O2 and Ar were found to have negligible interaction with ZIF-8. When considering pristine gases with ZIF-8, the absorption was only possible with CO2, while the adsorption was dominated by H2O, followed by CO2, in energetic magnitude order. In the explicit competition between gases, the CO2 absorption was greatly decreased when simulated with either H2O or N2. The CO2 adsorption was mostly unchanged by the presence of N2, while it was inhibited when H2O was available. Also, both CO2 uptake and selectivity were enhanced in lower temperatures and higher pressures. The ZIF-8 nanoparticle with more superficial Zn atoms excelled at capturing CO2. Although it was the nanoparticle with the highest charge, increments of charge made by adding protons to the surface sites had no effect on the CO2 capture. The effectiveness of ZIF-8 nanoparticles to capture CO2 decreased as its size grew. From another perspective, absorbed CO2 was compacted by ZIF-8 similarly to low density liquid CO2. Additionally, adsorbed CO2 was structured in a web that resembled solid phase CO2. Those features highlight the importance of the ZIF-8 surface on the CO2 capture and its potential to store compacted CO2. Along with the specific results of gas capture by ZIF-8, this work also aimed to create guidelines on surface conditions treatment of MOFs.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/43/43134/tde-02072021-174115/
url https://www.teses.usp.br/teses/disponiveis/43/43134/tde-02072021-174115/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256610768945152