Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego

Detalhes bibliográficos
Autor(a) principal: Felicio, Adriano Belletti
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18144/tde-12052020-170835/
Resumo: Devido ao grande crescimento de motocicletas na frota urbana e o crescimento do estudo sobre seu comportamento e de como este veículo afeta o fluxo de tráfego torna-se necessário o desenvolvimento de ferramentas e técnicas diferentes das convencionais para identificar sua presença no trânsito e ser capaz de extrair suas informações. O trabalho em questão tenta contribuir para o estudo sobre este tipo de veículo, gerando um banco de imagens de motocicletas, desenvolvendo e calibrando um classificador de motocicleta e analisando o comportamento destes condutores através da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos com o classificador desenvolvido. O classificador desenvolvido combina as técnicas de LBP para criar os vetores de características e a técnica de classificação LinearSVC para realizar as previsões. Desta forma o classificador de veículos do tipo motocicleta desenvolvido nesta pesquisa pode classificar as imagens de veículos extraídos de vídeos de monitoramento entre duas classes de motocicletas e não-motocicletas com uma precisão e uma exatidão superior a 0,9. A análise exploratória realizada nos dados obtidos da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos como classificador desenvolvido evidenciou uma preferência por parte das motocicletas em trafegarem na faixa da direita, mais precisamente no seu 1/3 de faixa mais próxima ao acostamento. O conjunto de dados obtidos permitiu observar algumas situações muito interessantes como as manobras de mudanças de faixa e manobras de ultrapassagem.
id USP_cc007e2084e61ba3700a81fd76219d35
oai_identifier_str oai:teses.usp.br:tde-12052020-170835
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfegoEvaluation of the behavior of motorcyclists through the video image processing systemClassificador de MotocicletaMáquina de Vetores de Suporte (SVM)MotocicletasMotorcycle classifierMotorcyclesSupport Vector Machine (SVM)Devido ao grande crescimento de motocicletas na frota urbana e o crescimento do estudo sobre seu comportamento e de como este veículo afeta o fluxo de tráfego torna-se necessário o desenvolvimento de ferramentas e técnicas diferentes das convencionais para identificar sua presença no trânsito e ser capaz de extrair suas informações. O trabalho em questão tenta contribuir para o estudo sobre este tipo de veículo, gerando um banco de imagens de motocicletas, desenvolvendo e calibrando um classificador de motocicleta e analisando o comportamento destes condutores através da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos com o classificador desenvolvido. O classificador desenvolvido combina as técnicas de LBP para criar os vetores de características e a técnica de classificação LinearSVC para realizar as previsões. Desta forma o classificador de veículos do tipo motocicleta desenvolvido nesta pesquisa pode classificar as imagens de veículos extraídos de vídeos de monitoramento entre duas classes de motocicletas e não-motocicletas com uma precisão e uma exatidão superior a 0,9. A análise exploratória realizada nos dados obtidos da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos como classificador desenvolvido evidenciou uma preferência por parte das motocicletas em trafegarem na faixa da direita, mais precisamente no seu 1/3 de faixa mais próxima ao acostamento. O conjunto de dados obtidos permitiu observar algumas situações muito interessantes como as manobras de mudanças de faixa e manobras de ultrapassagem.Due to the great movement of the camera, the performance control model and the current transmission mechanism is necessary and can be used for the selection of tools. extract your information. The evaluation exercise to evaluate the movement of a motorcycle image bank to develop and calibrate a driver analysis and evaluation system through the joint use of an automatic image monitoring system in video images with the developed classifier. The classifier generated combinations as LBP techniques to create the characteristic and a LinearSVC classification technique to perform as predictions. In this way the media wallpaper sorter shot two classes of motorcycles and non-motorcycles with an accuracy and accuracy greater than 0.9. An exploratory analysis performed on the joint use data of an automatic video image detection system with the developed classifier evidences a preference for motorcycling in the right lane, more precisely its range of 1/3 scale near the shoulder. The data set of a course of monitoring of some occurrences is much more interesting as maneuvers of group changes and maneuvers of overtaking.Biblioteca Digitais de Teses e Dissertações da USPCunha, André Luiz Barbosa Nunes daFelicio, Adriano Belletti2019-06-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18144/tde-12052020-170835/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-12052020-170835Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
Evaluation of the behavior of motorcyclists through the video image processing system
title Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
spellingShingle Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
Felicio, Adriano Belletti
Classificador de Motocicleta
Máquina de Vetores de Suporte (SVM)
Motocicletas
Motorcycle classifier
Motorcycles
Support Vector Machine (SVM)
title_short Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
title_full Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
title_fullStr Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
title_full_unstemmed Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
title_sort Identificação automática de motociclistas através de processamento de imagens de vídeo de tráfego
author Felicio, Adriano Belletti
author_facet Felicio, Adriano Belletti
author_role author
dc.contributor.none.fl_str_mv Cunha, André Luiz Barbosa Nunes da
dc.contributor.author.fl_str_mv Felicio, Adriano Belletti
dc.subject.por.fl_str_mv Classificador de Motocicleta
Máquina de Vetores de Suporte (SVM)
Motocicletas
Motorcycle classifier
Motorcycles
Support Vector Machine (SVM)
topic Classificador de Motocicleta
Máquina de Vetores de Suporte (SVM)
Motocicletas
Motorcycle classifier
Motorcycles
Support Vector Machine (SVM)
description Devido ao grande crescimento de motocicletas na frota urbana e o crescimento do estudo sobre seu comportamento e de como este veículo afeta o fluxo de tráfego torna-se necessário o desenvolvimento de ferramentas e técnicas diferentes das convencionais para identificar sua presença no trânsito e ser capaz de extrair suas informações. O trabalho em questão tenta contribuir para o estudo sobre este tipo de veículo, gerando um banco de imagens de motocicletas, desenvolvendo e calibrando um classificador de motocicleta e analisando o comportamento destes condutores através da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos com o classificador desenvolvido. O classificador desenvolvido combina as técnicas de LBP para criar os vetores de características e a técnica de classificação LinearSVC para realizar as previsões. Desta forma o classificador de veículos do tipo motocicleta desenvolvido nesta pesquisa pode classificar as imagens de veículos extraídos de vídeos de monitoramento entre duas classes de motocicletas e não-motocicletas com uma precisão e uma exatidão superior a 0,9. A análise exploratória realizada nos dados obtidos da utilização conjunta de um sistema de detecção automática de veículos em imagens de vídeos como classificador desenvolvido evidenciou uma preferência por parte das motocicletas em trafegarem na faixa da direita, mais precisamente no seu 1/3 de faixa mais próxima ao acostamento. O conjunto de dados obtidos permitiu observar algumas situações muito interessantes como as manobras de mudanças de faixa e manobras de ultrapassagem.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18144/tde-12052020-170835/
url https://www.teses.usp.br/teses/disponiveis/18/18144/tde-12052020-170835/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279076988715008