Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062015-111716/ |
Resumo: | O problema de empacotamento em faixas de peças irregulares consiste em cortar um conjunto de peças bidimensionais a partir de um objeto de largura fixa utilizando o menor comprimento possível. Apesar de sua importância econômica para diversos setores industriais, há poucos trabalhos que abordam o problema de forma exata devido a sua dificuldade de resolução. Recentemente, Toledo et al. (2013) propuseram um modelo inteiro misto para este problema, no qual as peças são posicionadas em uma malha de pontos. Este modelo obteve bons resultados, provando a otimalidade para instâncias com até 21 peças. No entanto, o modelo possui um grande número de restrições de não-sobreposição, que cresce rapidamente de acordo com a discretização utilizada e a quantidade de peças distintas que devem ser alocadas. Neste trabalho, são propostas novas formulações matemáticas baseadas neste modelo, com o objetivo de reduzir o número de restrições. Na primeira abordagem, são propostos dois modelos reduzidos que mostraram ser eficientes para instâncias com poucas repetições de peças. Na segunda abordagem, foi proposto um modelo de cobertura por cliques para o problema. Este modelo obteve desempenho igual ou superior ao modelo da literatura para todas as instâncias avaliadas, obtendo uma solução ótima para instâncias com até 28 peças. |
id |
USP_cc11e286944d5828247ac39968538a45 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-25062015-111716 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregularesMathematical models for the irregular packing problemClique coveringCobertura por cliquesEmpacotamento em faixasIrregularMixed integer progrmmingNestingPeças irregularesProgramação inteira mistaStrip packingO problema de empacotamento em faixas de peças irregulares consiste em cortar um conjunto de peças bidimensionais a partir de um objeto de largura fixa utilizando o menor comprimento possível. Apesar de sua importância econômica para diversos setores industriais, há poucos trabalhos que abordam o problema de forma exata devido a sua dificuldade de resolução. Recentemente, Toledo et al. (2013) propuseram um modelo inteiro misto para este problema, no qual as peças são posicionadas em uma malha de pontos. Este modelo obteve bons resultados, provando a otimalidade para instâncias com até 21 peças. No entanto, o modelo possui um grande número de restrições de não-sobreposição, que cresce rapidamente de acordo com a discretização utilizada e a quantidade de peças distintas que devem ser alocadas. Neste trabalho, são propostas novas formulações matemáticas baseadas neste modelo, com o objetivo de reduzir o número de restrições. Na primeira abordagem, são propostos dois modelos reduzidos que mostraram ser eficientes para instâncias com poucas repetições de peças. Na segunda abordagem, foi proposto um modelo de cobertura por cliques para o problema. Este modelo obteve desempenho igual ou superior ao modelo da literatura para todas as instâncias avaliadas, obtendo uma solução ótima para instâncias com até 28 peças.The irregular strip packing problem consists of cutting a set of two-dimensional pieces from an object of fixed width using the smallest possible length. Despite its economic importance for many industrial sectors, few exact studies have been made on this problem due to its difficulty of resolution. Recently, Toledo et al. (2013) proposed a mixed-integer model to this problem in which the pieces are placed on a grid. This model has worked successfully proving the optimality for instances up to 21 pieces. However, the model has a large number of non-overlapping constraints, which grows quickly in accordance with the discretization resolution and number of distinct pieces. In this work, we propose new mathematical formulations based on this model in order to reduce the number of constraints. In the first approach, we present two reduced models that have shown to be effective for instances with few repetitions of pieces. In the second approach, it was proposed a clique covering model for the problem. This model achieved a greater or equal performance than the literature for all instances, getting an optimal solution for instances up to 28 pieces.Biblioteca Digitais de Teses e Dissertações da USPToledo, Franklina Maria Bragion deRodrigues, Marcos Okamura2015-02-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062015-111716/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:57Zoai:teses.usp.br:tde-25062015-111716Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares Mathematical models for the irregular packing problem |
title |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
spellingShingle |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares Rodrigues, Marcos Okamura Clique covering Cobertura por cliques Empacotamento em faixas Irregular Mixed integer progrmming Nesting Peças irregulares Programação inteira mista Strip packing |
title_short |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
title_full |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
title_fullStr |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
title_full_unstemmed |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
title_sort |
Modelos matemáticos para o problema de empacotamento em faixas de peças irregulares |
author |
Rodrigues, Marcos Okamura |
author_facet |
Rodrigues, Marcos Okamura |
author_role |
author |
dc.contributor.none.fl_str_mv |
Toledo, Franklina Maria Bragion de |
dc.contributor.author.fl_str_mv |
Rodrigues, Marcos Okamura |
dc.subject.por.fl_str_mv |
Clique covering Cobertura por cliques Empacotamento em faixas Irregular Mixed integer progrmming Nesting Peças irregulares Programação inteira mista Strip packing |
topic |
Clique covering Cobertura por cliques Empacotamento em faixas Irregular Mixed integer progrmming Nesting Peças irregulares Programação inteira mista Strip packing |
description |
O problema de empacotamento em faixas de peças irregulares consiste em cortar um conjunto de peças bidimensionais a partir de um objeto de largura fixa utilizando o menor comprimento possível. Apesar de sua importância econômica para diversos setores industriais, há poucos trabalhos que abordam o problema de forma exata devido a sua dificuldade de resolução. Recentemente, Toledo et al. (2013) propuseram um modelo inteiro misto para este problema, no qual as peças são posicionadas em uma malha de pontos. Este modelo obteve bons resultados, provando a otimalidade para instâncias com até 21 peças. No entanto, o modelo possui um grande número de restrições de não-sobreposição, que cresce rapidamente de acordo com a discretização utilizada e a quantidade de peças distintas que devem ser alocadas. Neste trabalho, são propostas novas formulações matemáticas baseadas neste modelo, com o objetivo de reduzir o número de restrições. Na primeira abordagem, são propostos dois modelos reduzidos que mostraram ser eficientes para instâncias com poucas repetições de peças. Na segunda abordagem, foi proposto um modelo de cobertura por cliques para o problema. Este modelo obteve desempenho igual ou superior ao modelo da literatura para todas as instâncias avaliadas, obtendo uma solução ótima para instâncias com até 28 peças. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062015-111716/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062015-111716/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257332146241536 |