Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function

Detalhes bibliográficos
Autor(a) principal: Costa, João Victor Cabral
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/46/46131/tde-07112023-151721/
Resumo: Mitochondria are specialized organelles involved in many cellular processes, including redox balance, macromolecule biosynthesis, and energy metabolism. In the central nervous system, mitochondrial dysfunctions are associated with many pathophysiological mechanisms central toward neurological disorders such as stroke, Amyotrophic Lateral Sclerosis, and Alzheimer\'s, Parkinson\'s, and Huntington\'s diseases. One of the common hallmarks of these diseases lies in the mitochondrial Ca2+ handling system. Mitochondria have the ability to uptake and release Ca2+ through the mitochondrial calcium uniporter complex (MCUc) and Na+/Ca2+ exchanger (NCLX), respectively. This Ca2+ cycling, apart from shaping cytosolic Ca2+ levels, can modulate distinct mitochondrial metabolic pathways. In astrocytes, the most abundant macroglial cell type in the brain, Ca2+ signaling plays a central role controlling cellular homeostasis and function, influencing several brain processes such as synaptic plasticity, circuit integration, behavior, and neurodegeneration. However, apart from influencing cell proliferation and survival, little was known to date regarding the role of NCLX on astrocyte physiology. Searches in public RNA-seq databases led us to observe that astrocytes have overenriched Nclx transcription when in comparison to neurons or total brain areas, reinforcing our hypothesis that NCLX may present further critical physiological functions in this cell type. To study these functions, we inhibited NCLX activity - pharmacologically and genetically - in mouse primary culture astrocytes. In vitro NCLX inhibition increased cytosolic Ca2+ clearance and induced a metabolic shift, increasing glycolytic flux and lactate secretion. In vivo deletion of NCLX specifically in hippocampal astrocytes improved mouse performance in behavioral tasks, while cognitive impairment was induced by neuronal-specific NCLX deletion. These data reveal a novel role of NCLX as a modulator of glucose metabolism in astrocytes, with functional cognitive impacts
id USP_ce6800dd7485b4882f6cfa3df9014918
oai_identifier_str oai:teses.usp.br:tde-07112023-151721
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and functionCa2+ Mitocondrial no Sistema Nervoso Central: o papel do trocador de Na+/Ca2+ mitocondrial (NCLX) no metabolismo e função de astrócitosAstrócitosAstrocyteCálcioCalciumLactateLactatoMetabolismMetabolismoMitochondriaMitocôndriasNCLXNCLXMitochondria are specialized organelles involved in many cellular processes, including redox balance, macromolecule biosynthesis, and energy metabolism. In the central nervous system, mitochondrial dysfunctions are associated with many pathophysiological mechanisms central toward neurological disorders such as stroke, Amyotrophic Lateral Sclerosis, and Alzheimer\'s, Parkinson\'s, and Huntington\'s diseases. One of the common hallmarks of these diseases lies in the mitochondrial Ca2+ handling system. Mitochondria have the ability to uptake and release Ca2+ through the mitochondrial calcium uniporter complex (MCUc) and Na+/Ca2+ exchanger (NCLX), respectively. This Ca2+ cycling, apart from shaping cytosolic Ca2+ levels, can modulate distinct mitochondrial metabolic pathways. In astrocytes, the most abundant macroglial cell type in the brain, Ca2+ signaling plays a central role controlling cellular homeostasis and function, influencing several brain processes such as synaptic plasticity, circuit integration, behavior, and neurodegeneration. However, apart from influencing cell proliferation and survival, little was known to date regarding the role of NCLX on astrocyte physiology. Searches in public RNA-seq databases led us to observe that astrocytes have overenriched Nclx transcription when in comparison to neurons or total brain areas, reinforcing our hypothesis that NCLX may present further critical physiological functions in this cell type. To study these functions, we inhibited NCLX activity - pharmacologically and genetically - in mouse primary culture astrocytes. In vitro NCLX inhibition increased cytosolic Ca2+ clearance and induced a metabolic shift, increasing glycolytic flux and lactate secretion. In vivo deletion of NCLX specifically in hippocampal astrocytes improved mouse performance in behavioral tasks, while cognitive impairment was induced by neuronal-specific NCLX deletion. These data reveal a novel role of NCLX as a modulator of glucose metabolism in astrocytes, with functional cognitive impactsMitocôndrias são organelas altamente especializadas, envolvidas em diversos processos celulares, incluindo o balanço redox, biossíntese de macromoléculas e metabolismo energético. No sistema nervoso central, disfunções mitocondriais são associadas com vários mecanismos patofisiológicos centrais de doenças neurológicas, como acidente vascular encefálico, Esclerose Lateral Amiotrófica, e as doenças de Alzheimer, Parkinson e Huntington. Neste contexto, um importante fator em comum é o manejo de Ca2+ mitocondrial. Mitocôndrias possuem a habilidade de captar e liberar Ca2+ por meio do complexo do uniporter de cálcio mitocondrial (MCUc) e do trocador Na+/Ca2+ (NCLX), respectivamente. Este transporte de Ca2+, além de moldar os sinais de Ca2+ citosólicos, pode contribuir com a modulação de diferentes pontos de vias metabólicas mitocondriais. Em astrócitos, a célula macroglial mais abundante e uma das mais importantes do cérebro, a sinalização de Ca2+ apresenta um papel central no controle da homeostase e função celular, influenciando diversos processos cerebrais, como plasticidade sináptica, integração de circuitos cerebrais, comportamentos e neurodegeneração. Contudo, além de influenciar a proliferação e sobrevivência, pouco se conhece sobre o papel do NCLX na fisiologia de astrócitos. Pesquisas em bases de dados públicas de RNA-seq nos levaram a identificar que o transcrito do Nclx se encontra enriquecido em astrócitos em comparação com neurônios ou o material total de áreas do cérebro, reforçando nossa hipótese de que o NCLX deve apresentar outras funções fisiológicas críticas neste tipo celular. Para abordar esta questão, a atividade do NCLX foi modulada - farmacológica e geneticamente - em cultura primária de astrócitos. A inibição do NCLX in vitro intensificou a depuração de Ca2+ citosólico e induziu um remodelamento metabólico, aumentando o fluxo glicolítico e a secreção de lactato. A deleção genética do NCLX in vivo, em astrócitos no hipocampo, aprimorou o desempenho de camundongos em testes comportamentais, em contraste a um prejuízo comportamental induzido pela deleção neuronal de NCLX. Estes resultados revelam um novo papel do NCLX como modulador do metabolismo de glicose em astrócitos, capaz de gerar impactos cognitivos.Biblioteca Digitais de Teses e Dissertações da USPKowaltowski, Alícia JulianaCosta, João Victor Cabral2022-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46131/tde-07112023-151721/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-12-21T12:41:02Zoai:teses.usp.br:tde-07112023-151721Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-12-21T12:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
Ca2+ Mitocondrial no Sistema Nervoso Central: o papel do trocador de Na+/Ca2+ mitocondrial (NCLX) no metabolismo e função de astrócitos
title Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
spellingShingle Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
Costa, João Victor Cabral
Astrócitos
Astrocyte
Cálcio
Calcium
Lactate
Lactato
Metabolism
Metabolismo
Mitochondria
Mitocôndrias
NCLX
NCLX
title_short Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
title_full Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
title_fullStr Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
title_full_unstemmed Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
title_sort Mitochondrial Ca2+ Handling in the Central Nervous System: the role of the mitochondrial Na+/Ca2+ exchanger (NCLX) in astrocyte metabolism and function
author Costa, João Victor Cabral
author_facet Costa, João Victor Cabral
author_role author
dc.contributor.none.fl_str_mv Kowaltowski, Alícia Juliana
dc.contributor.author.fl_str_mv Costa, João Victor Cabral
dc.subject.por.fl_str_mv Astrócitos
Astrocyte
Cálcio
Calcium
Lactate
Lactato
Metabolism
Metabolismo
Mitochondria
Mitocôndrias
NCLX
NCLX
topic Astrócitos
Astrocyte
Cálcio
Calcium
Lactate
Lactato
Metabolism
Metabolismo
Mitochondria
Mitocôndrias
NCLX
NCLX
description Mitochondria are specialized organelles involved in many cellular processes, including redox balance, macromolecule biosynthesis, and energy metabolism. In the central nervous system, mitochondrial dysfunctions are associated with many pathophysiological mechanisms central toward neurological disorders such as stroke, Amyotrophic Lateral Sclerosis, and Alzheimer\'s, Parkinson\'s, and Huntington\'s diseases. One of the common hallmarks of these diseases lies in the mitochondrial Ca2+ handling system. Mitochondria have the ability to uptake and release Ca2+ through the mitochondrial calcium uniporter complex (MCUc) and Na+/Ca2+ exchanger (NCLX), respectively. This Ca2+ cycling, apart from shaping cytosolic Ca2+ levels, can modulate distinct mitochondrial metabolic pathways. In astrocytes, the most abundant macroglial cell type in the brain, Ca2+ signaling plays a central role controlling cellular homeostasis and function, influencing several brain processes such as synaptic plasticity, circuit integration, behavior, and neurodegeneration. However, apart from influencing cell proliferation and survival, little was known to date regarding the role of NCLX on astrocyte physiology. Searches in public RNA-seq databases led us to observe that astrocytes have overenriched Nclx transcription when in comparison to neurons or total brain areas, reinforcing our hypothesis that NCLX may present further critical physiological functions in this cell type. To study these functions, we inhibited NCLX activity - pharmacologically and genetically - in mouse primary culture astrocytes. In vitro NCLX inhibition increased cytosolic Ca2+ clearance and induced a metabolic shift, increasing glycolytic flux and lactate secretion. In vivo deletion of NCLX specifically in hippocampal astrocytes improved mouse performance in behavioral tasks, while cognitive impairment was induced by neuronal-specific NCLX deletion. These data reveal a novel role of NCLX as a modulator of glucose metabolism in astrocytes, with functional cognitive impacts
publishDate 2022
dc.date.none.fl_str_mv 2022-10-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/46/46131/tde-07112023-151721/
url https://www.teses.usp.br/teses/disponiveis/46/46131/tde-07112023-151721/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256771530326016