Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/100/100131/tde-17012018-193542/ |
Resumo: | A avaliação acadêmica (de docentes, departamentos, programas de pós-graduação ou instituições) é uma atividade rotineira e utilizada para, por exemplo, a concessão de recursos para um projeto, definição da verba que será liberada a um dado programa de pós-graduação ou mesmo para a autorização do oferecimento de um curso de doutorado para um programa de pós-graduação. Contudo, determinar a qualidade do ensino não é uma tarefa trivial, com metodologias comparativas ainda em estudo. Dois destes critérios são informações bibliométricas e análise das redes de coautorias dos programas. Assim, o desenvolvimento de métodos e ferramentas para automatizar parte da avaliação ou mesmo para identificar a importância de diferentes métricas podem tanto auxiliar no processo de avaliação como servir para auxiliar as pessoas ou os grupos que serão avaliados. Neste trabalho foram desenvolvidas ferramentas para a realização automática de análise bibliométrica e de redes sociais para a caracterização e ranqueamento de grupos acadêmicos, bem como investigar a relação entre diferentes medidas e alguns ranqueamentos acadêmicos existentes. As ferramentas foram avaliadas considerando departamentos internacionais e programas de pós-graduação da área de Ciência da Computação. Os resultados de nosso estudo indicaram quais métricas contribuíram positivamente e negativamente para a posição dos ranqueamentos dos programas |
id |
USP_d21d49f9703a995eee6806bf55a8e7e5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17012018-193542 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociaisAutomatic characterization of academic groups using bibliometrics and social networks analysisAnálise de gruposAnálise de redes sociaisBibliometriaBibliometricsGroup analysisSocial networks analysisA avaliação acadêmica (de docentes, departamentos, programas de pós-graduação ou instituições) é uma atividade rotineira e utilizada para, por exemplo, a concessão de recursos para um projeto, definição da verba que será liberada a um dado programa de pós-graduação ou mesmo para a autorização do oferecimento de um curso de doutorado para um programa de pós-graduação. Contudo, determinar a qualidade do ensino não é uma tarefa trivial, com metodologias comparativas ainda em estudo. Dois destes critérios são informações bibliométricas e análise das redes de coautorias dos programas. Assim, o desenvolvimento de métodos e ferramentas para automatizar parte da avaliação ou mesmo para identificar a importância de diferentes métricas podem tanto auxiliar no processo de avaliação como servir para auxiliar as pessoas ou os grupos que serão avaliados. Neste trabalho foram desenvolvidas ferramentas para a realização automática de análise bibliométrica e de redes sociais para a caracterização e ranqueamento de grupos acadêmicos, bem como investigar a relação entre diferentes medidas e alguns ranqueamentos acadêmicos existentes. As ferramentas foram avaliadas considerando departamentos internacionais e programas de pós-graduação da área de Ciência da Computação. Os resultados de nosso estudo indicaram quais métricas contribuíram positivamente e negativamente para a posição dos ranqueamentos dos programasThe academic evaluation (of researchers, departments, graduate programs or institutions) is a routine activity and used for the granting of resources for a project, definition of the funds that will be released to a given graduate program or even for the authorization of the offering of a doctorate course. However, this activity is complex with comparative methodologies still in evaluation. Two criteria used are bibliometrics information and scientific social network analysis. Thus, the development of methods and tools to automate part of the evaluation or even to identify the importance of different metrics for the evaluation can both aid the evaluation process and serve as a guide for the researchers or groups that will be evaluated. In this work, tools were developed for performing automatically bibliometric and social networks analysis for the characterization and ranking of academic groups, as well as to investigate the relationship between different measures and some existing academic rankings. The tools were evaluated considering international departments and graduate programs in the Computer Science area. Our results showed which metrics contributed positively and negatively in the rank positioning of the programsBiblioteca Digitais de Teses e Dissertações da USPDigiampietri, Luciano AntonioBarbosa, Lênin Ferreira2017-10-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-17012018-193542/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-17012018-193542Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais Automatic characterization of academic groups using bibliometrics and social networks analysis |
title |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais |
spellingShingle |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais Barbosa, Lênin Ferreira Análise de grupos Análise de redes sociais Bibliometria Bibliometrics Group analysis Social networks analysis |
title_short |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais |
title_full |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais |
title_fullStr |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais |
title_full_unstemmed |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais |
title_sort |
Caracterização automática de grupos acadêmicos utilizando bibliometria e análise de redes sociais |
author |
Barbosa, Lênin Ferreira |
author_facet |
Barbosa, Lênin Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Digiampietri, Luciano Antonio |
dc.contributor.author.fl_str_mv |
Barbosa, Lênin Ferreira |
dc.subject.por.fl_str_mv |
Análise de grupos Análise de redes sociais Bibliometria Bibliometrics Group analysis Social networks analysis |
topic |
Análise de grupos Análise de redes sociais Bibliometria Bibliometrics Group analysis Social networks analysis |
description |
A avaliação acadêmica (de docentes, departamentos, programas de pós-graduação ou instituições) é uma atividade rotineira e utilizada para, por exemplo, a concessão de recursos para um projeto, definição da verba que será liberada a um dado programa de pós-graduação ou mesmo para a autorização do oferecimento de um curso de doutorado para um programa de pós-graduação. Contudo, determinar a qualidade do ensino não é uma tarefa trivial, com metodologias comparativas ainda em estudo. Dois destes critérios são informações bibliométricas e análise das redes de coautorias dos programas. Assim, o desenvolvimento de métodos e ferramentas para automatizar parte da avaliação ou mesmo para identificar a importância de diferentes métricas podem tanto auxiliar no processo de avaliação como servir para auxiliar as pessoas ou os grupos que serão avaliados. Neste trabalho foram desenvolvidas ferramentas para a realização automática de análise bibliométrica e de redes sociais para a caracterização e ranqueamento de grupos acadêmicos, bem como investigar a relação entre diferentes medidas e alguns ranqueamentos acadêmicos existentes. As ferramentas foram avaliadas considerando departamentos internacionais e programas de pós-graduação da área de Ciência da Computação. Os resultados de nosso estudo indicaram quais métricas contribuíram positivamente e negativamente para a posição dos ranqueamentos dos programas |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-17012018-193542/ |
url |
http://www.teses.usp.br/teses/disponiveis/100/100131/tde-17012018-193542/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256513690730496 |