Qualitative properties of impulsive semidynamical systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18042017-110611/ |
Resumo: | The theory of impulsive dynamical systems is an important tool to describe the evolution of systems where the continuous development of a process is interrupted by abrupt changes of state. This phenomenon is called impulse. In many natural phenomena, the real deterministic models are often described by systems which involve impulses. The aim of this work is to investigate topological properties of impulsive semidynamical systems. We establish necessary and sufficient conditions to obtain uniform and orbital stability via Lyapunov functions. We solve a problem of Jake Hale for impulsive systems where we obtain the existence of a maximal compact invariant set. Also, we obtain results about almost periodic motions and asymptotically almost periodic motions in the context of impulsive systems. Some asymptotic properties for impulsive systems and for their associated discrete systems are investigated. The new results presented in this text are in the papers [11], [15] and [16]. |
id |
USP_d2e93e140abdfb9a5faa5b05996c67f9 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18042017-110611 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Qualitative properties of impulsive semidynamical systemsPropriedades qualitativas de sistemas semidinâmicos impulsivosDissipatividadeDissipativityDynamical systemsEstabilidadeImpulsesImpulsosRecorrênciaRecurrenceSistemas dinâmicosStabilityThe theory of impulsive dynamical systems is an important tool to describe the evolution of systems where the continuous development of a process is interrupted by abrupt changes of state. This phenomenon is called impulse. In many natural phenomena, the real deterministic models are often described by systems which involve impulses. The aim of this work is to investigate topological properties of impulsive semidynamical systems. We establish necessary and sufficient conditions to obtain uniform and orbital stability via Lyapunov functions. We solve a problem of Jake Hale for impulsive systems where we obtain the existence of a maximal compact invariant set. Also, we obtain results about almost periodic motions and asymptotically almost periodic motions in the context of impulsive systems. Some asymptotic properties for impulsive systems and for their associated discrete systems are investigated. The new results presented in this text are in the papers [11], [15] and [16].A teoria de sistemas dinâmicos com impulsos é apropriada para descrever processos de evolução que sofrem variações de estado de curta duração e que podem ser consideradas instantâneas. Este fenômeno é chamado impulso. Para muitos fenômenos naturais, os modelos determinísticos mais realistas são frequentemente descritos por sistemas que envolvem impulsos. O objetivo deste trabalho é estudar propriedades topológicas para sistemas semidinâmicos impulsivos. Estabelecemos condições necessárias e suficientes para obtermos estabilidade uniforme e estabilidade orbital utilizando funções do tipo Lyapunov. Resolvemos um problema de Jack Hale para os sistemas impulsivos, onde obtemos a existência de um conjunto invariante compacto maximal. Além disso, obtemos resultados de movimentos quase periódicos e movimentos assintoticamente quase periódicos para sistemas impulsivos. Algumas propriedades assintóticas são estabelecidas para um sistema impulsivo e para seu sistema discreto associado. Os resultados novos apresentados neste trabalho estão presentes nos artigos [11], [15] e [16].Biblioteca Digitais de Teses e Dissertações da USPBonotto, Everaldo de MelloFederson, Márcia Cristina Anderson BrazSouto, Ginnara Mexia2017-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-18042017-110611/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:34:08Zoai:teses.usp.br:tde-18042017-110611Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Qualitative properties of impulsive semidynamical systems Propriedades qualitativas de sistemas semidinâmicos impulsivos |
title |
Qualitative properties of impulsive semidynamical systems |
spellingShingle |
Qualitative properties of impulsive semidynamical systems Souto, Ginnara Mexia Dissipatividade Dissipativity Dynamical systems Estabilidade Impulses Impulsos Recorrência Recurrence Sistemas dinâmicos Stability |
title_short |
Qualitative properties of impulsive semidynamical systems |
title_full |
Qualitative properties of impulsive semidynamical systems |
title_fullStr |
Qualitative properties of impulsive semidynamical systems |
title_full_unstemmed |
Qualitative properties of impulsive semidynamical systems |
title_sort |
Qualitative properties of impulsive semidynamical systems |
author |
Souto, Ginnara Mexia |
author_facet |
Souto, Ginnara Mexia |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bonotto, Everaldo de Mello Federson, Márcia Cristina Anderson Braz |
dc.contributor.author.fl_str_mv |
Souto, Ginnara Mexia |
dc.subject.por.fl_str_mv |
Dissipatividade Dissipativity Dynamical systems Estabilidade Impulses Impulsos Recorrência Recurrence Sistemas dinâmicos Stability |
topic |
Dissipatividade Dissipativity Dynamical systems Estabilidade Impulses Impulsos Recorrência Recurrence Sistemas dinâmicos Stability |
description |
The theory of impulsive dynamical systems is an important tool to describe the evolution of systems where the continuous development of a process is interrupted by abrupt changes of state. This phenomenon is called impulse. In many natural phenomena, the real deterministic models are often described by systems which involve impulses. The aim of this work is to investigate topological properties of impulsive semidynamical systems. We establish necessary and sufficient conditions to obtain uniform and orbital stability via Lyapunov functions. We solve a problem of Jake Hale for impulsive systems where we obtain the existence of a maximal compact invariant set. Also, we obtain results about almost periodic motions and asymptotically almost periodic motions in the context of impulsive systems. Some asymptotic properties for impulsive systems and for their associated discrete systems are investigated. The new results presented in this text are in the papers [11], [15] and [16]. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18042017-110611/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18042017-110611/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257065716711424 |