Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-142901/ |
Resumo: | We have measured, for the first time, the magnitude and temporal pulse width dependency of the nonlinear refractive index of gaseous samples using the nonlinear ellipse rotation effect. Due to their low density, gases nonlinear refractive index are hardly accessed through available techniques commonly used for solid and liquid samples. There are techniques based on spectral broadening, interferometry, four wave-mixing, and filamentation which probe gases nonlinear refractive index, though each one present some sort of limitation or constrain. In order to provide an alternative to the previous techniques, we present a novel experimental setup to measure gases nonlinear refractive index for several excitation pulse width. The weak gases nonlinearity was overcome by extending the gas-light interaction length using a hollow core fiber, also known as capillary. By this way, we measured the nonlinear refractive index of helium, argon, nitrogen, and oxygen, along with their mixture into the atmospheric gas. Molecular gases nonlinear refractive index contribution results from its intra-pulse molecular alignment, which is dependent on the pulse width. On the other hand, we have profited from noble gases instantaneous electronic contribution, as they are monoatomic gases, to obtain a temporal pulse calibration based on argon nonlinear ellipse rotation signal. In order to unveil the transition and the amount of each contribution in gases, we have studied and characterized the effective nonlinear refractive index of the studied samples varying the pulse width from 40 fs up to 3 ps in a continuous manner. An empirical model has been proposed in order to distinguish the electronic nonresonant from the molecular orientation contribution for the effective nonlinear refractive index. In the second part of this work, we have explored infrared pulses spectrum broadening in hollow core fiver filled with noble gases, followed by proper temporal compression to reach sub-10 fs IR pulse, which was used to excite a soliton breaking phenomena in order to study the generation of energetic and ultrashort tunable deep ultraviolet light source. The dispersion wave emission in gas filled hollow core fibers have been recently explored for this very end. New sources of light, with enough energy and ultrashort pulse width, capable to excite nonlinearities in the materials, has been extremely desired for spectroscopy in the deep UV region. |
id |
USP_d3b8f8c3bfed459699ec5fa5b0b7d820 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18052020-142901 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiberCaracterização do índice de refração não linear em gases e geração de UV profundo e energético em fibras ocasAtmospheric gasesGases atmosféricosGeração de UVÍndice de refração não linearNonlinear ellipse rotationNonlinear refractive indexÓptica ultrarrápidaRotação não linear da polarização elípticaUltrafast opticsUV generationWe have measured, for the first time, the magnitude and temporal pulse width dependency of the nonlinear refractive index of gaseous samples using the nonlinear ellipse rotation effect. Due to their low density, gases nonlinear refractive index are hardly accessed through available techniques commonly used for solid and liquid samples. There are techniques based on spectral broadening, interferometry, four wave-mixing, and filamentation which probe gases nonlinear refractive index, though each one present some sort of limitation or constrain. In order to provide an alternative to the previous techniques, we present a novel experimental setup to measure gases nonlinear refractive index for several excitation pulse width. The weak gases nonlinearity was overcome by extending the gas-light interaction length using a hollow core fiber, also known as capillary. By this way, we measured the nonlinear refractive index of helium, argon, nitrogen, and oxygen, along with their mixture into the atmospheric gas. Molecular gases nonlinear refractive index contribution results from its intra-pulse molecular alignment, which is dependent on the pulse width. On the other hand, we have profited from noble gases instantaneous electronic contribution, as they are monoatomic gases, to obtain a temporal pulse calibration based on argon nonlinear ellipse rotation signal. In order to unveil the transition and the amount of each contribution in gases, we have studied and characterized the effective nonlinear refractive index of the studied samples varying the pulse width from 40 fs up to 3 ps in a continuous manner. An empirical model has been proposed in order to distinguish the electronic nonresonant from the molecular orientation contribution for the effective nonlinear refractive index. In the second part of this work, we have explored infrared pulses spectrum broadening in hollow core fiver filled with noble gases, followed by proper temporal compression to reach sub-10 fs IR pulse, which was used to excite a soliton breaking phenomena in order to study the generation of energetic and ultrashort tunable deep ultraviolet light source. The dispersion wave emission in gas filled hollow core fibers have been recently explored for this very end. New sources of light, with enough energy and ultrashort pulse width, capable to excite nonlinearities in the materials, has been extremely desired for spectroscopy in the deep UV region.Nós medimos, pela primeira vez, a magnitude e a dependência com a duração temporal do feixe de excitação do índice de refração não linear de gases utilizando a rotação não linear da polarização eliptica. O índice de refração não linear de amostras gasosas é dificilmente acessível através das técnicas experimentais utilizadas usualmente em sólidos e líquidos. Técnicas baseadas no alargamento espectral, interferometria, mistura de quatro ondas, e filamentação medem o índice de refração não linear de gases, porém cada uma dela apresenta limitações e características distintas. Afim de sobrepujar essas limitações, exploramos um novo método para medir o índice de refração não linear em gases de uma forma ainda mais sensível e para várias durações de pulso. A fraca magnitude dos efeitos não lineares em gases foi superada estendendo o comprimento de interação confinando os gases em fibras oca. Dessa forma, medimos o índice de refração não linear de amostras de hélio, argônio, nitrogênio, oxigênio, além da composição destes contida no ar atmosférico. Nós demonstramos como a contribuição do alinhamento intra-pulso das moléculas que compõem os gases moleculares para o valor do índice de refração não linear dependem da duração do pulso. Exploramos a contribuição instantânea dos gases nobres, para medir o valor da duração do pulso através do sinal de RNLPE medido no argônio. Assim, para quantificar e distinguir a quantidade de cada contribuição nos gases, caracterizamos o valor efetivo do índice de refração não linear das amostras estudadas variando a duração temporal continuamente desde 40 fs até 3 ps. Propusermos um modelo empírico para avaliar a contribuição oriunda de efeitos puramente eletrônicos e de origem em orientação molecular para o valor efetivo do índice de refração não linear. Na seguda etapa deste trabalho, exploramos o alargamento espectral em fibra oca preenchidos com gases nobres, seguido de compressão temporal para produzir pulsos sub 10 fs no infra-vermelho, que por sua vez foram utilizados para induzir a fissão em sólitons ópticos para estudar a geração de ultra-violeta profundo, sintonizável, energético e ultracurto. O fenômeno de emissão de onda dispersiva em fibras ocas preenchidas com gases tem sido recentemente explorado para esse fim. Novas fontes de luz sintonizáveis na região do UV profundo, com intensidade suficiente para induzir fenômenos não lineares, desejada para espectroscopia de materiais.Biblioteca Digitais de Teses e Dissertações da USPMisoguti, LinoSouza, Tiago Gualberto Bezerra de2019-09-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-142901/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-05-27T06:17:02Zoai:teses.usp.br:tde-18052020-142901Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-05-27T06:17:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber Caracterização do índice de refração não linear em gases e geração de UV profundo e energético em fibras ocas |
title |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber |
spellingShingle |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber Souza, Tiago Gualberto Bezerra de Atmospheric gases Gases atmosféricos Geração de UV Índice de refração não linear Nonlinear ellipse rotation Nonlinear refractive index Óptica ultrarrápida Rotação não linear da polarização elíptica Ultrafast optics UV generation |
title_short |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber |
title_full |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber |
title_fullStr |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber |
title_full_unstemmed |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber |
title_sort |
Characterization of gases nonlinear refractive index and energetic deep UV generation in hollow core fiber |
author |
Souza, Tiago Gualberto Bezerra de |
author_facet |
Souza, Tiago Gualberto Bezerra de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Misoguti, Lino |
dc.contributor.author.fl_str_mv |
Souza, Tiago Gualberto Bezerra de |
dc.subject.por.fl_str_mv |
Atmospheric gases Gases atmosféricos Geração de UV Índice de refração não linear Nonlinear ellipse rotation Nonlinear refractive index Óptica ultrarrápida Rotação não linear da polarização elíptica Ultrafast optics UV generation |
topic |
Atmospheric gases Gases atmosféricos Geração de UV Índice de refração não linear Nonlinear ellipse rotation Nonlinear refractive index Óptica ultrarrápida Rotação não linear da polarização elíptica Ultrafast optics UV generation |
description |
We have measured, for the first time, the magnitude and temporal pulse width dependency of the nonlinear refractive index of gaseous samples using the nonlinear ellipse rotation effect. Due to their low density, gases nonlinear refractive index are hardly accessed through available techniques commonly used for solid and liquid samples. There are techniques based on spectral broadening, interferometry, four wave-mixing, and filamentation which probe gases nonlinear refractive index, though each one present some sort of limitation or constrain. In order to provide an alternative to the previous techniques, we present a novel experimental setup to measure gases nonlinear refractive index for several excitation pulse width. The weak gases nonlinearity was overcome by extending the gas-light interaction length using a hollow core fiber, also known as capillary. By this way, we measured the nonlinear refractive index of helium, argon, nitrogen, and oxygen, along with their mixture into the atmospheric gas. Molecular gases nonlinear refractive index contribution results from its intra-pulse molecular alignment, which is dependent on the pulse width. On the other hand, we have profited from noble gases instantaneous electronic contribution, as they are monoatomic gases, to obtain a temporal pulse calibration based on argon nonlinear ellipse rotation signal. In order to unveil the transition and the amount of each contribution in gases, we have studied and characterized the effective nonlinear refractive index of the studied samples varying the pulse width from 40 fs up to 3 ps in a continuous manner. An empirical model has been proposed in order to distinguish the electronic nonresonant from the molecular orientation contribution for the effective nonlinear refractive index. In the second part of this work, we have explored infrared pulses spectrum broadening in hollow core fiver filled with noble gases, followed by proper temporal compression to reach sub-10 fs IR pulse, which was used to excite a soliton breaking phenomena in order to study the generation of energetic and ultrashort tunable deep ultraviolet light source. The dispersion wave emission in gas filled hollow core fibers have been recently explored for this very end. New sources of light, with enough energy and ultrashort pulse width, capable to excite nonlinearities in the materials, has been extremely desired for spectroscopy in the deep UV region. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-142901/ |
url |
https://www.teses.usp.br/teses/disponiveis/76/76131/tde-18052020-142901/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1826318776020238336 |