Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.

Detalhes bibliográficos
Autor(a) principal: Arashiro, Everaldo
Data de Publicação: 2002
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-05032002-121019/
Resumo: Investigações da dinâmica crítica em modelos de magnetismo, para tempos curtos, têm aparecido com grande freqüência na literatura. Essa técnica foi descoberta por Li, Schülke e Zheng que, inspirados em trabalhos anteriores de Huse e Janssen et al., mostraram que generalizações de grandezas como a magnetização e o cumulante de Binder exibem comportamento universal já no início da simulação. O estudo da criticalidade em tempos curtos proporciona um caminho alternativo para a estimativa do expoente z, além de permitir o cálculo de um novo expoente dinâmico θ, associado ao comportamento anômalo da magnetização. Da mesma forma, simulações dependentes do tempo tornaram-se ferramenta útil para estudar transições de fase em autômatos celulares e modelos de spin. Em particular, as melhores estimativas para o expoente z do Ising bidimensional foram obtidas por meio da técnica de propagação de danos, introduzida por Kauffman no estudo de autômatos e mais tarde generalizada para modelos de spin. Na primeira parte deste trabalho utilizamos o método Monte Carlo em tempos curtos para investigar o modelo de Baxter-Wu, definido em uma rede bidimensional triangular com variáveis do tipo Ising, acopladas por interações de três corpos. Obtivemos os expoentes críticos dinâmicos z e θ além dos índices críticos estáticos ß e Nû. Os resultados não corroboram aqueles recentemente obtidos por Santos e Figueiredo para o expoente z. Na segunda parte do trabalho, investigamos a propagação de danos no modelo de Ising unidimensional submetido a duas dinâmicas propostas por Hinrichsen e Domany (HD). Em particular, nós estudamos o efeito da atualização síncrona (paralela) e assíncrona (dinâmica contínua) sobre o espalhamento do dano. Mostramos que o dano não se propaga quando a segunda dinâmica é implementada de forma assíncrona. Também mostramos que as regras para atualização do dano produzidas por essa dinâmica, quando a temperatura vai a infinito e um certo parâmetro Lambda é igual a zero, são equivalentes àquelas do bem conhecido autômato celular (modelo A) de Grassberger.
id USP_d4fcb835b7ff9d9347b27bd132b3edfe
oai_identifier_str oai:teses.usp.br:tde-05032002-121019
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.Dynamic Monte Carlo method applied to Ising and Baxter-Wu models.autômatos celularescellular automatoncritical phenomenadamage-spreadingdynamic critical exponentexpoentes dinâmicosfenômenos críticospropagação de danoshort-timetempos curtosuniversalidadeuniversalityInvestigações da dinâmica crítica em modelos de magnetismo, para tempos curtos, têm aparecido com grande freqüência na literatura. Essa técnica foi descoberta por Li, Schülke e Zheng que, inspirados em trabalhos anteriores de Huse e Janssen et al., mostraram que generalizações de grandezas como a magnetização e o cumulante de Binder exibem comportamento universal já no início da simulação. O estudo da criticalidade em tempos curtos proporciona um caminho alternativo para a estimativa do expoente z, além de permitir o cálculo de um novo expoente dinâmico θ, associado ao comportamento anômalo da magnetização. Da mesma forma, simulações dependentes do tempo tornaram-se ferramenta útil para estudar transições de fase em autômatos celulares e modelos de spin. Em particular, as melhores estimativas para o expoente z do Ising bidimensional foram obtidas por meio da técnica de propagação de danos, introduzida por Kauffman no estudo de autômatos e mais tarde generalizada para modelos de spin. Na primeira parte deste trabalho utilizamos o método Monte Carlo em tempos curtos para investigar o modelo de Baxter-Wu, definido em uma rede bidimensional triangular com variáveis do tipo Ising, acopladas por interações de três corpos. Obtivemos os expoentes críticos dinâmicos z e θ além dos índices críticos estáticos ß e Nû. Os resultados não corroboram aqueles recentemente obtidos por Santos e Figueiredo para o expoente z. Na segunda parte do trabalho, investigamos a propagação de danos no modelo de Ising unidimensional submetido a duas dinâmicas propostas por Hinrichsen e Domany (HD). Em particular, nós estudamos o efeito da atualização síncrona (paralela) e assíncrona (dinâmica contínua) sobre o espalhamento do dano. Mostramos que o dano não se propaga quando a segunda dinâmica é implementada de forma assíncrona. Também mostramos que as regras para atualização do dano produzidas por essa dinâmica, quando a temperatura vai a infinito e um certo parâmetro Lambda é igual a zero, são equivalentes àquelas do bem conhecido autômato celular (modelo A) de Grassberger.Short-time simulations have been used with great frequency in the literature. That technique was discovered by Li, Shülke and Zheng that, inspired in previous works by Huse and Janssen et al., showed that generalizations of quantities like magnetization and the Binder´s cumulant exhibit universal behavior in the beginning of the simulation (early time behavior). The study of criticality in short-times provides an alternative way to estimate the dynamic critical exponent z, besides allowing the calculation of a new dynamic exponent θ, associated to the anomalous behavior of the magnetization. In the same way, time-dependent simulations became a useful tool to study phase transitions in cellular automata and also for spin models. In fact, the best estimates for the exponent z of the two-dimensional Ising model were obtained through the technique of damage spreading, introduced by Kauffman in the study of cellular automata, later widespread for spin models. In the first part of this work we used short-time Monte Carlo simulations to investigate the Baxter-Wu model, defined in a triangular lattice whose variables are Ising-like coupled by triplet interactions. We have obtained estimates for the dynamic critical exponents z and θ besides static exponents ß e Nû. Our results do not corroborate recent estimates by Santos and Figueiredo for the critical exponent z. In the second part of this work, we investigated the damage spreading in the one-dimensional Ising model under two dynamics introduced by Hinrichsen and Domany (HD). In particular, we study the effects of synchronous (parallel) and asynchronous (continuous dynamics) updating on the spreading properties. We showed that the damage does not spread when the second dynamic is implemented in an asynchronous way. We found that the rules for updating the damage produced by this dynamic, as the temperature goes to infinity and a certain parameter Lambda is zero, are equivalent to those of Grassberger’s well-known model A cellular automaton.Biblioteca Digitais de Teses e Dissertações da USPFelicio, Jose Roberto Drugowich deArashiro, Everaldo2002-02-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-05032002-121019/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-05032002-121019Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
Dynamic Monte Carlo method applied to Ising and Baxter-Wu models.
title Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
spellingShingle Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
Arashiro, Everaldo
autômatos celulares
cellular automaton
critical phenomena
damage-spreading
dynamic critical exponent
expoentes dinâmicos
fenômenos críticos
propagação de dano
short-time
tempos curtos
universalidade
universality
title_short Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
title_full Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
title_fullStr Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
title_full_unstemmed Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
title_sort Monte Carlo dinâmico aplicado aos modelos de Ising e Baxter-Wu.
author Arashiro, Everaldo
author_facet Arashiro, Everaldo
author_role author
dc.contributor.none.fl_str_mv Felicio, Jose Roberto Drugowich de
dc.contributor.author.fl_str_mv Arashiro, Everaldo
dc.subject.por.fl_str_mv autômatos celulares
cellular automaton
critical phenomena
damage-spreading
dynamic critical exponent
expoentes dinâmicos
fenômenos críticos
propagação de dano
short-time
tempos curtos
universalidade
universality
topic autômatos celulares
cellular automaton
critical phenomena
damage-spreading
dynamic critical exponent
expoentes dinâmicos
fenômenos críticos
propagação de dano
short-time
tempos curtos
universalidade
universality
description Investigações da dinâmica crítica em modelos de magnetismo, para tempos curtos, têm aparecido com grande freqüência na literatura. Essa técnica foi descoberta por Li, Schülke e Zheng que, inspirados em trabalhos anteriores de Huse e Janssen et al., mostraram que generalizações de grandezas como a magnetização e o cumulante de Binder exibem comportamento universal já no início da simulação. O estudo da criticalidade em tempos curtos proporciona um caminho alternativo para a estimativa do expoente z, além de permitir o cálculo de um novo expoente dinâmico θ, associado ao comportamento anômalo da magnetização. Da mesma forma, simulações dependentes do tempo tornaram-se ferramenta útil para estudar transições de fase em autômatos celulares e modelos de spin. Em particular, as melhores estimativas para o expoente z do Ising bidimensional foram obtidas por meio da técnica de propagação de danos, introduzida por Kauffman no estudo de autômatos e mais tarde generalizada para modelos de spin. Na primeira parte deste trabalho utilizamos o método Monte Carlo em tempos curtos para investigar o modelo de Baxter-Wu, definido em uma rede bidimensional triangular com variáveis do tipo Ising, acopladas por interações de três corpos. Obtivemos os expoentes críticos dinâmicos z e θ além dos índices críticos estáticos ß e Nû. Os resultados não corroboram aqueles recentemente obtidos por Santos e Figueiredo para o expoente z. Na segunda parte do trabalho, investigamos a propagação de danos no modelo de Ising unidimensional submetido a duas dinâmicas propostas por Hinrichsen e Domany (HD). Em particular, nós estudamos o efeito da atualização síncrona (paralela) e assíncrona (dinâmica contínua) sobre o espalhamento do dano. Mostramos que o dano não se propaga quando a segunda dinâmica é implementada de forma assíncrona. Também mostramos que as regras para atualização do dano produzidas por essa dinâmica, quando a temperatura vai a infinito e um certo parâmetro Lambda é igual a zero, são equivalentes àquelas do bem conhecido autômato celular (modelo A) de Grassberger.
publishDate 2002
dc.date.none.fl_str_mv 2002-02-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59135/tde-05032002-121019/
url http://www.teses.usp.br/teses/disponiveis/59/59135/tde-05032002-121019/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256686029438976