Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10082009-094357/ |
Resumo: | Apresenta-se nesta tese os resultados de aplicações do formalismo da Mecânica Estatística em dois problemas independentes. O primeiro diz respeito a um modelo para Evolução do Acasalamento Preferencial no processo de Especiação Simpátrica; enquanto que o segundo refere-se ao desenvolvimento de um algoritmo de aprendizado por meio de Inferência Aproximativa. No problema biológico estudado, cada indivíduo em um modelo de agentes é composto por dois traços. Enquanto um é responsável pela ecologia do indivíduo, o outro dita uma aparência física descorrelacionada com a adaptabilidade. Esses traços são expressos por diferentes loci que estão ligados entre si por uma taxa de recombinação. O modelo inclui também a possibilidade de evolução da preferência sexual dos indivíduos. Foi construído para esse modelo um diagrama de fases no espaço dos parâmetros que descrevem o ambiente como, por exemplo, quantidades de recursos e deficiência do indivíduo híbrido. Foram encontradas três fases de equilíbrio: (i) emergência de Acasalamento Preferencial; (ii) extinção de um dos alelos do locus responsável pela ecologia e (iii) equilíbrio Hardy-Weinberg. Foi verificado que o acasalamento preferencial pode emergir ou mesmo ser perdido (e vice-versa) em resposta a mudanças no ambiente. Além disso, o sistema apresenta memória característica típica de transições de primeira ordem, o que permitiu a descrição desse sistema biológico por meio do arcabouço da Mecânica Estatística. Em relação à Inferência Aproximativa, está-se interessado na construção de um algoritmo de aprendizado supervisionado por meio da técnica de Propagação de Expectativas. Mais especificamente, pretende-se inferir os parâmetros que compõem um Perceptron Professor a partir do conjunto de pares - entradas e saídas - que formam o conjunto de dados disponíveis. A estimativa desses parâmetros será feita pela substituição de uma distribuição Posterior original, geralmente intratável, por uma distribuição aproximativa tratável. o algoritmo Propagação de Expectativas foi adotado para a atualização, passo a passo, dos termos que compõem essa distribuição aproximativa. Essa atualização deve ser repetida até que a convergência seja atingida. Utilizando o Teorema do Limite Central e o método de Cavidade, foi possível obter um algoritmo genérico e que apresentou desempenho bastante evidente em dois modelos estudados: o modelo do Perceptron Binário e o modelo do Perceptron Gaussiano, com desempenho ótimo em ambos os casos. |
id |
USP_d56a28157ca769861fe204e7dcbd5997 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10082009-094357 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativaApplications of statistical mechanics to sympatric speciation and aproximative inferenceAssortative matingBayesian inferenceEspeciação simpátricaInferência bayesianaModelos de mecânica estatísticaStatistical mechanics modelsSympatric speciationApresenta-se nesta tese os resultados de aplicações do formalismo da Mecânica Estatística em dois problemas independentes. O primeiro diz respeito a um modelo para Evolução do Acasalamento Preferencial no processo de Especiação Simpátrica; enquanto que o segundo refere-se ao desenvolvimento de um algoritmo de aprendizado por meio de Inferência Aproximativa. No problema biológico estudado, cada indivíduo em um modelo de agentes é composto por dois traços. Enquanto um é responsável pela ecologia do indivíduo, o outro dita uma aparência física descorrelacionada com a adaptabilidade. Esses traços são expressos por diferentes loci que estão ligados entre si por uma taxa de recombinação. O modelo inclui também a possibilidade de evolução da preferência sexual dos indivíduos. Foi construído para esse modelo um diagrama de fases no espaço dos parâmetros que descrevem o ambiente como, por exemplo, quantidades de recursos e deficiência do indivíduo híbrido. Foram encontradas três fases de equilíbrio: (i) emergência de Acasalamento Preferencial; (ii) extinção de um dos alelos do locus responsável pela ecologia e (iii) equilíbrio Hardy-Weinberg. Foi verificado que o acasalamento preferencial pode emergir ou mesmo ser perdido (e vice-versa) em resposta a mudanças no ambiente. Além disso, o sistema apresenta memória característica típica de transições de primeira ordem, o que permitiu a descrição desse sistema biológico por meio do arcabouço da Mecânica Estatística. Em relação à Inferência Aproximativa, está-se interessado na construção de um algoritmo de aprendizado supervisionado por meio da técnica de Propagação de Expectativas. Mais especificamente, pretende-se inferir os parâmetros que compõem um Perceptron Professor a partir do conjunto de pares - entradas e saídas - que formam o conjunto de dados disponíveis. A estimativa desses parâmetros será feita pela substituição de uma distribuição Posterior original, geralmente intratável, por uma distribuição aproximativa tratável. o algoritmo Propagação de Expectativas foi adotado para a atualização, passo a passo, dos termos que compõem essa distribuição aproximativa. Essa atualização deve ser repetida até que a convergência seja atingida. Utilizando o Teorema do Limite Central e o método de Cavidade, foi possível obter um algoritmo genérico e que apresentou desempenho bastante evidente em dois modelos estudados: o modelo do Perceptron Binário e o modelo do Perceptron Gaussiano, com desempenho ótimo em ambos os casos.This thesis presents applications of the framework of Statistical Mechanics to two independent problems. The first corresponds to a computational model for the evolution of Assortative Mating in the Sympatric Speciation process; and the second a learning algorithm built by means of a Bayesian Inference approach. In the biological problem each individual in an agent-based model is composed of two traits. One trait, called the ecological trait, is directly related with the fitness; the other, called the marker trait, has no bearing on the fitness. The traits are determined by different loci which are linked by a recombination rate. There is also the possibility of evolution of mating preferences, which are inherited from the mother and subject to random variations. The study of the phase diagram in the spa e of parameters describing the environment (like carrying capacity and disruptive selection) reveals the existence of three phases: (i) assortative mating; (ii) extinction of one allele from ecological loci; and (iii) Hardy-Weinberg equilibrium. It was verifed that the assortative mating an emerge or even be lost (and vice-versa) acording with the environmental hanges. Moreover, the system shows memory of the initial condition, characterising a hysteresis. Hysteresis is the signature of first order phase transition, which allows the description of the system by means of the Statistical Mechanics framework. In relation to the Bayesian Inference, a supervised learning algorithm was constructed by means of the Expectation Propagation approach. The idea is to estimate the parameters which compose a Teacher Perceptron by the substitution of the original posterior distribution, intra table, by a tractable approximative distribution. The step-by-step update of the terms composing the approximative distribution was performed by using the Expectation Propagation algorithm. The update must be repeated until the convergence ocurrs. Using the Central Limit Theorem and the Cavity Approah, it was possible to get a generic algorithm that has shown a very good performance in two application scenarios: The Binary Perceptron Model and the Gaussian Perceptron Model.Biblioteca Digitais de Teses e Dissertações da USPAlfonso, Nestor Felipe CatichaRibeiro, Fabiano Lemes2009-06-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-10082009-094357/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-10082009-094357Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa Applications of statistical mechanics to sympatric speciation and aproximative inference |
title |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa |
spellingShingle |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa Ribeiro, Fabiano Lemes Assortative mating Bayesian inference Especiação simpátrica Inferência bayesiana Modelos de mecânica estatística Statistical mechanics models Sympatric speciation |
title_short |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa |
title_full |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa |
title_fullStr |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa |
title_full_unstemmed |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa |
title_sort |
Aplicações de mecânica estatística a especiação simpátrica e inferência aproximativa |
author |
Ribeiro, Fabiano Lemes |
author_facet |
Ribeiro, Fabiano Lemes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Alfonso, Nestor Felipe Caticha |
dc.contributor.author.fl_str_mv |
Ribeiro, Fabiano Lemes |
dc.subject.por.fl_str_mv |
Assortative mating Bayesian inference Especiação simpátrica Inferência bayesiana Modelos de mecânica estatística Statistical mechanics models Sympatric speciation |
topic |
Assortative mating Bayesian inference Especiação simpátrica Inferência bayesiana Modelos de mecânica estatística Statistical mechanics models Sympatric speciation |
description |
Apresenta-se nesta tese os resultados de aplicações do formalismo da Mecânica Estatística em dois problemas independentes. O primeiro diz respeito a um modelo para Evolução do Acasalamento Preferencial no processo de Especiação Simpátrica; enquanto que o segundo refere-se ao desenvolvimento de um algoritmo de aprendizado por meio de Inferência Aproximativa. No problema biológico estudado, cada indivíduo em um modelo de agentes é composto por dois traços. Enquanto um é responsável pela ecologia do indivíduo, o outro dita uma aparência física descorrelacionada com a adaptabilidade. Esses traços são expressos por diferentes loci que estão ligados entre si por uma taxa de recombinação. O modelo inclui também a possibilidade de evolução da preferência sexual dos indivíduos. Foi construído para esse modelo um diagrama de fases no espaço dos parâmetros que descrevem o ambiente como, por exemplo, quantidades de recursos e deficiência do indivíduo híbrido. Foram encontradas três fases de equilíbrio: (i) emergência de Acasalamento Preferencial; (ii) extinção de um dos alelos do locus responsável pela ecologia e (iii) equilíbrio Hardy-Weinberg. Foi verificado que o acasalamento preferencial pode emergir ou mesmo ser perdido (e vice-versa) em resposta a mudanças no ambiente. Além disso, o sistema apresenta memória característica típica de transições de primeira ordem, o que permitiu a descrição desse sistema biológico por meio do arcabouço da Mecânica Estatística. Em relação à Inferência Aproximativa, está-se interessado na construção de um algoritmo de aprendizado supervisionado por meio da técnica de Propagação de Expectativas. Mais especificamente, pretende-se inferir os parâmetros que compõem um Perceptron Professor a partir do conjunto de pares - entradas e saídas - que formam o conjunto de dados disponíveis. A estimativa desses parâmetros será feita pela substituição de uma distribuição Posterior original, geralmente intratável, por uma distribuição aproximativa tratável. o algoritmo Propagação de Expectativas foi adotado para a atualização, passo a passo, dos termos que compõem essa distribuição aproximativa. Essa atualização deve ser repetida até que a convergência seja atingida. Utilizando o Teorema do Limite Central e o método de Cavidade, foi possível obter um algoritmo genérico e que apresentou desempenho bastante evidente em dois modelos estudados: o modelo do Perceptron Binário e o modelo do Perceptron Gaussiano, com desempenho ótimo em ambos os casos. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10082009-094357/ |
url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10082009-094357/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090585677529088 |